Publications by authors named "Gong H Han"

We aimed to develop a biocompatible treatment to overcome the limitations of polymethyl methacrylate (PMMA) vertebroplasty for osteoporotic compression fracture patients. We synthesized an injectable hydrogel containing PMMA. Mesenchymal stem cell (MSC) spheroids were included in the injectable PMMA-doped gel (= PMMA-doped spheroid gel).

View Article and Find Full Text PDF

Background: Neural stem cells (NSCs) derived from the embryonic spinal cord are excellent candidates for the cellular regeneration of lost neural cells after spinal cord injury (SCI). Semaphorin 3 A (Sema3A) is well known as being implicated in the major axon guidance of the growth cone as a repulsive function during the development of the central nervous system, yet its function in NSC transplantation therapy for SCI has not been investigated. Here, we report for the first time that embryonic spinal cord-derived NSCs significantly express Sema3A in the SCI environment, potentially facilitating inhibition of cell proliferation after transplantation.

View Article and Find Full Text PDF

In this study, we aimed to investigate the recovery after traumatic spinal cord injury (SCI) by inducing cellular differentiation of transplanted neural stem cells (NSCs) into neurons. We dissociated NSCs from the spinal cords of Fisher 344 rat embryos. An injectable gel crosslinked with glycol chitosan and oxidized hyaluronate was used as a vehicle for NSC transplantation.

View Article and Find Full Text PDF

In this study, we created a hydrogel composed of glycol chitosan (gC) and oxidized hyaluronate (oHA). Gold nanoparticles (GNPs) were conjugated with ursodeoxycholic acid (UDCA). The GNP-UDCA complex was embedded into gC-oHA (CHA) hydrogels to form a CHA-GNP-UDCA gel.

View Article and Find Full Text PDF

Objectives: In this study, we study the transplantation of tauroursodeoxycholic acid (TUDCA)-induced M2-phenotype (M2) macrophages and their ability to promote anti-neuroinflammatory effects and functional recovery in a spinal cord injury (SCI) model.

Methods: To this end, compared to the granulocyte-macrophage colony-stimulating factor (GM-CSF), we evaluated whether TUDCA effectively differentiates bone marrow-derived macrophages (BMDMs) into M2 macrophages.

Results: The M2 expression markers in the TUDCA-treated BMDM group were increased more than those in the GM-CSF-treated BMDM group.

View Article and Find Full Text PDF

We investigate the anti-inflammatory effects of injectable hydrogel containing tauroursodeoxycholic acid (TUDCA) in a spinal cord injury (SCI) model. To this end, TUDCA-hydrogel (TC gel) is created by immersing the synthesized hydrogel in a TUDCA solution for 1 h. A mechanical SCI was imposed on rats, after which we injected the TC gel.

View Article and Find Full Text PDF