Publications by authors named "Goncharov V"

: A combination of increased human presence in the Arctic zone alongside climate change has led to a decrease in the number of wild reindeer (). Studying the genetic potential of this species will aid in conservation efforts, while simultaneously promoting improved meat productivity in domestic reindeer. Alongside reducing feed costs, increasing disease resistance, etc.

View Article and Find Full Text PDF

This paper presents a simple physics-based model for the interpretation of key metrics in laser direct drive. The only input parameters required are target scale, in-flight aspect ratio, and beam-to-target radius, and the importance of each has been quantified with a tailored set of cryogenic implosion experiments. These analyses lead to compact and accurate predictions of the fusion yield and areal density as a function of hydrodynamic stability, and they suggest new ways to take advantage of direct drive.

View Article and Find Full Text PDF

Improved laser illumination uniformity drives shocks and implosions to create more extreme high energy density environments. Predominantly, the geometry of experiments that can be performed is dictated by the layout of beams at laser facilities, limiting interfacility and multiscale investigations. This Letter presents the first automated, algorithmic approach for generating illumination configurations for high energy density experiments.

View Article and Find Full Text PDF

We show that an x-ray emission signature associated with acceleration phase mass injection [R. C. Shah et al.

View Article and Find Full Text PDF

Precise modeling of shocks in inertial confinement fusion implosions is critical for obtaining the desired compression in experiments. Shock velocities and postshock conditions are determined by laser-energy deposition, heat conduction, and equations of state. This paper describes experiments at the National Ignition Facility (NIF) [E.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

Purpose: To compare the rates and outcomes of endophthalmitis after intravitreal injections (IVIs) for patients pretreated with 5% povidone-iodine (PI) and 0.05% chlorhexidine (CHX).

Design: A retrospective, single-center, comparative cohort study.

View Article and Find Full Text PDF

We present a model of the electron thermal conductivity of a laser-produced plasma. The model, supported by Vlasov-Fokker-Planck simulations, predicts that laser absorption reduces conductivity by forcing electrons out of a Maxwell-Boltzmann equilibrium, which results in the depletion of both low-velocity bulk electrons and high-velocity tail electrons. We show that both the bulk and tail electrons approximately follow super-Gaussian distributions, but with distinct exponents that each depend on the laser intensity and wavelength through the parameter α=Zv_{E}^{2}/v_{T}^{2}.

View Article and Find Full Text PDF

Objective: Identify structural disorders of the surface of the enamel of a human tooth during the development of the carious process in the «white spot» stage using atomic force microscopy (AFM).

Material And Metods: The studies were carried out on 10 molar samples in areas with initial caries in the white spot stage. 6 areas of initial caries were scanned using the atomic force microscope Cetus Light (Nano Scan Technology, Russia) in semi-contact mode.

View Article and Find Full Text PDF

Nonlocal electron transport is important for understanding laser-target coupling for laser-direct-drive (LDD) inertial confinement fusion (ICF) simulations. Current models for the nonlocal electron mean free path in radiation-hydrodynamic codes are based on plasma-physics models developed decades ago; improvements are needed to accurately predict the electron conduction in LDD simulations of ICF target implosions. We utilized time-dependent density functional theory (TD-DFT) to calculate the electron stopping power (SP) in the so-called conduction-zone plasmas of polystyrene in a wide range of densities and temperatures relevant to LDD.

View Article and Find Full Text PDF

Laser-direct-drive fusion target designs with solid deuterium-tritium (DT) fuel, a high-Z gradient-density pusher shell (GDPS), and a Au-coated foam layer have been investigated through both 1D and 2D radiation-hydrodynamic simulations. Compared with conventional low-Z ablators and DT-push-on-DT targets, these GDPS targets possess certain advantages of being instability-resistant implosions that can be high adiabat (α≥8) and low hot-spot and pusher-shell convergence (CR_{hs}≈22 and CR_{PS}≈17), and have a low implosion velocity (v_{imp}<3×10^{7}cm/s). Using symmetric drive with laser energies of 1.

View Article and Find Full Text PDF

We used deep-learning-based models to automatically obtain elastic moduli from resonant ultrasound spectroscopy (RUS) spectra, which conventionally require user intervention of published analysis codes. By strategically converting theoretical RUS spectra into their modulated fingerprints and using them as a dataset to train neural network models, we obtained models that successfully predicted both elastic moduli from theoretical test spectra of an isotropic material and from a measured steel RUS spectrum with up to 9.6% missing resonances.

View Article and Find Full Text PDF

Target preheat by superthermal electrons from laser-plasma instabilities is a major obstacle to achieving thermonuclear ignition via direct-drive inertial confinement fusion at the National Ignition Facility (NIF). Polar-direct-drive surrogate plastic implosion experiments were performed on the NIF to quantify preheat levels at an ignition-relevant scale and develop mitigation strategies. The experiments were used to infer the hot-electron temperature, energy fraction, and divergence, and to directly measure the spatial hot-electron energy deposition profile inside the imploding shell.

View Article and Find Full Text PDF

A platform has been developed to study laser-direct-drive energy coupling at the National Ignition Facility (NIF) using a plastic sphere target irradiated in a polar-direct-drive geometry to launch a spherically converging shock wave. To diagnose this system evolution, eight NIF laser beams are directed onto a curved Cu foil to generate He line emission at a photon energy of 8.4 keV.

View Article and Find Full Text PDF

Thermal stability and thermodynamic properties of aluminum(III)-1,3,5-benzenetricarboxylate (Al-BTC) metal-organic frameworks (MOFs), including MIL-96, MIL-100, and MIL-110, have been investigated through a suite of calorimetric and X-ray techniques. high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) revealed that these MOFs undergo thermal amorphization prior to ligand combustion. Thermal stabilities of Al-BTC MOFs follow the increasing order MIL-110 < MIL-96 < MIL-100, based on estimated amorphization temperatures.

View Article and Find Full Text PDF

Spherical implosions in inertial confinement fusion are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelength) perturbations is a key milestone to improving implosion performances. We present the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with an inline package for polarized crossed-beam energy transfer.

View Article and Find Full Text PDF

MXenes are ultra-thin two-dimensional layered early transition-metal carbides and nitrides with potential applications in various emerging technologies, such as energy storage, water purification, and catalysis. MXenes are synthesized from the parent MAX phases with different etching agents [hydrofluoric acid (HF) or fluoride salts with a strong acid] by selectively removing a more weakly bound crystalline layer of Al or Ga replaced by surface groups (-O, -F, -OH, etc.).

View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

In laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration.

View Article and Find Full Text PDF

Nanoscale multi-principal element intermetallics (MPEIs) may provide a broad and tunable compositional space of active, high-surface area materials with potential applications such as catalysis and magnetics. However, MPEI nanoparticles are challenging to fabricate because of the tendency of the particles to grow/agglomerate or phase-separated during annealing. Here, we demonstrate a disorder-to-order phase transition approach that enables the synthesis of ultrasmall (4 to 5 nm) and stable MPEI nanoparticles (up to eight elements).

View Article and Find Full Text PDF

A combined approach to study cold rarefied matter is introduced that includes a semianalytical method based on the free-energy minimization and ab initio calculations based on the finite-temperature density-functional theory. The approach is used to calculate the ionization state of hydrocarbon (CH) under the shock-release conditions in inertial confinement fusion. The dielectric constant of CH is calculated using the Kubo-Greenwood formulation and contribution from atomic polarizabilities is found to be as important as the free-electron contribution.

View Article and Find Full Text PDF

Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.

View Article and Find Full Text PDF

In deuterium-tritium cryogenic implosions, hot-spot x-ray self-emission is observed to begin at a larger shell radius than is predicted by a one-dimensional radiation-hydrodynamic implosion model. Laser-imprint is shown to explain the observation for a low-adiabat implosion. For more-stable implosions the data are not described by the imprint model and suggest there are additional sources of decompression of the dense fuel.

View Article and Find Full Text PDF

Aluminum-based metal-organic frameworks (Al-MOFs) have shown promise as commercially valuable materials due to the variety of applications, excellent thermal, hydrothermal, and chemical stabilities, and the abundance of aluminum. In this work, for the first time, we report the solvent-free synthesis of the aluminum trimesate (Al-BTC) MOFs (MIL-100(Al), MIL-96(Al), and MIL-110(Al)) with phase selectivity and high yield. These MOFs were traditionally prepared with HF, HNO, and bulk solvents, but these methods struggled to produce pure-phase isolations.

View Article and Find Full Text PDF