Publications by authors named "Gon Carmi"

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic interactions between bacteria in the rhizosphere impact plant-related functions and understanding these interactions can enhance microbial community functionality.
  • A new framework using genomics and modeling has been developed to study these interactions, focusing on bacteria in apple rhizospheres linked to disease outcomes.
  • This research enables the identification of specific microbial species and compounds that could either suppress or support diseases, providing insights for targeted manipulation of microbiomes across various environments.
View Article and Find Full Text PDF

Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation.

View Article and Find Full Text PDF

Here, we introduce a novel 'evolution of protein domains' (EvoProDom) model for describing the evolution of proteins based on the 'mix and merge' of protein domains. We assembled and integrated genomic and proteomic data comprising protein domain content and orthologous proteins from 109 organisms. In EvoProDom, we characterized evolutionary events, particularly, translocations, as reciprocal exchanges of protein domains between orthologous proteins in different organisms.

View Article and Find Full Text PDF

Circulating animal coronaviruses occasionally infect humans. The SARS-CoV-2 is responsible for the current worldwide outbreak of COVID-19 that has resulted in 2 112 844 deaths as of late January 2021. We compared genetic code preferences in 496 viruses, including 34 coronaviruses and 242 corresponding hosts, to uncover patterns that distinguish single- and 'promiscuous' multiple-host-infecting viruses.

View Article and Find Full Text PDF

The recent outbreak of COVID-19 has generated an enormous amount of Big Data. To date, the COVID-19 Open Research Dataset (CORD-19), lists ∼130,000 articles from the WHO COVID-19 database, PubMed Central, medRxiv, and bioRxiv, as collected by Semantic Scholar. According to LitCovid (11 August 2020), ∼40,300 COVID19-related articles are currently listed in PubMed.

View Article and Find Full Text PDF

In contrast to fossorial and above-ground organisms, subterranean species have adapted to the extreme stresses of living underground. We analyzed the predicted protein-protein interactions (PPIs) of all gene products, including those of stress-response genes, among nine subterranean, ten fossorial, and 13 aboveground species. We considered 10,314 unique orthologous protein families and constructed 5,879,879 PPIs in all organisms using ChiPPI.

View Article and Find Full Text PDF

The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated.

View Article and Find Full Text PDF