Publications by authors named "Gompert Z"

Karst ecosystems often contain extraordinary biodiversity, but the complex underground aquifers of karst regions present challenges for assessing and conserving stygobiont diversity and investigating their evolutionary history. We examined the karst-obligate salamanders of the species complex in the Edwards Plateau region of central Texas using population genomics data to address questions about population connectivity and the potential for gene exchange within the underlying aquifer system. The species complex has historically been divided into three nominal species, but their status, and spatial extent of species ranges, have remained uncertain.

View Article and Find Full Text PDF

Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome.

View Article and Find Full Text PDF
Article Synopsis
  • Hybrid zones, where different species interbreed, provide key insights into how species form and evolve.
  • The new R package, bgchm, enhances population genomic analysis of these hybrid zones by improving Bayesian methods for estimating ancestry and genetic patterns.
  • bgchm offers accurate parameter estimation and can discern the roles of selection and genetic drift in introgression, while also addressing the limitations and future potential of genomic cline analysis.
View Article and Find Full Text PDF

Understanding how mutations arise and spread through individuals and populations is fundamental to evolutionary biology. Most organisms have a life cycle with unicellular bottlenecks during reproduction. However, some organisms like plants, fungi, or colonial animals can grow indefinitely, changing the manner in which mutations spread throughout both the individual and the population.

View Article and Find Full Text PDF

The extent to which evolution is repeatable remains debated. Here, we study changes over time in the frequency of cryptic color-pattern morphs in 10 replicate long-term field studies of a stick insect, each spanning at least a decade (across 30 years of total data). We find predictable "up-and-down" fluctuations in stripe frequency in all populations, representing repeatable evolutionary dynamics based on standing genetic variation.

View Article and Find Full Text PDF

Phenotypic variation within species can affect the ecological dynamics of populations and communities. Characterizing the genetic variation underlying such effects can help parse the roles of genetic evolution and plasticity in "eco-evolutionary dynamics" and inform how genetic variation may shape patterns of evolution. Here, we employ genome-wide association (GWA) methods in Timema cristinae stick insects and their co-occurring arthropod communities to identify genetic variation associated with community-level traits.

View Article and Find Full Text PDF

Speciation is often viewed as a continuum along which populations diverge until they become reproductively-isolated species. However, such divergence may be heterogeneous, proceeding in fits and bursts, rather than being uniform and gradual. We show in Timema stick insects that one component of reproductive isolation evolves non-uniformly across this continuum, whereas another does not.

View Article and Find Full Text PDF

Understanding the processes that underlie the development of population genetic structure is central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures of isolation by distance (IBD), barriers to gene flow, or even the genesis of speciation. However, it is unclear how severe range restriction might impact the processes that dominate the development of genetic structure.

View Article and Find Full Text PDF

Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity.

View Article and Find Full Text PDF

Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms.

View Article and Find Full Text PDF

In hybrid zones, whether barrier loci experience selection mostly independently or as a unit depends on the ratio of selection to recombination as captured by the coupling coefficient. Theory predicts a sharper transition between an uncoupled and coupled system when more loci affect hybrid fitness. However, the extent of coupling in hybrid zones has rarely been quantified.

View Article and Find Full Text PDF

There is increasing evidence that evolutionary and ecological processes can operate on the same timescale (i.e., contemporary time).

View Article and Find Full Text PDF

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated.

View Article and Find Full Text PDF

Species formation is a central topic in biology, and a large body of theoretical work has explored the conditions under which speciation occurs, including whether speciation dynamics are gradual or abrupt. In some cases of abrupt speciation, differentiation slowly builds up until it reaches a threshold, at which point linkage disequilibrium (LD) and divergent selection enter a positive feedback loop that triggers accelerated change. Notably, such abrupt transitions powered by a positive feedback have also been observed in a range of other systems.

View Article and Find Full Text PDF

A major unresolved issue in biology is why phenotypic and genetic variation is sometimes continuous, yet other times packaged into discrete units of diversity, such as morphs, ecotypes, and species. In theory, ecological discontinuities can impose strong disruptive selection that promotes the evolution of discrete forms, but direct tests of this hypothesis are lacking. Here, we show that stick insects exhibit genetically determined color morphs that range from weakly to strongly discontinuous.

View Article and Find Full Text PDF

Host-associated microbiomes play important roles in host health and pathogen defense. In amphibians, the skin-associated microbiota can contribute to innate immunity with potential implications for disease management. Few studies have examined season-long temporal variation in the amphibian skin-associated microbiome, and the interactions between bacteria and fungi on amphibian skin remain poorly understood.

View Article and Find Full Text PDF

Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution.

View Article and Find Full Text PDF

Our ability to predict natural phenomena can be limited by incomplete information. This issue is exemplified by "Laplace's demon," an imaginary creature proposed in the 18th century, who knew everything about everything, and thus could predict the full nature of the universe forward or backward in time. Quantum mechanics, among other things, has cast doubt on the possibility of Laplace's demon in the full sense, but the idea still serves as a useful metaphor for thinking about the extent to which prediction is limited by incomplete information on deterministic processes versus random factors.

View Article and Find Full Text PDF

Hybrid zones provide valuable opportunities to understand the genomic mechanisms that promote speciation by providing insight into factors involved in intermediate stages of speciation. Here, we investigate introgression in a hybrid zone between two rattlesnake species (Crotalus viridis and Crotalus oreganus concolor) that have undergone historical allopatric divergence and recent range expansion and secondary contact. We use Bayesian genomic cline models to characterize genomic patterns of introgression between these lineages and identify loci potentially subject to selection in hybrids.

View Article and Find Full Text PDF
Article Synopsis
  • Plant-insect interactions are significant in biology, but the roles of genetic variation in both plants and insects are often unclear and under-examined.
  • Researchers studied the Melissa blue butterfly's recent use of alfalfa to explore how genetics affects caterpillar performance at different developmental stages.
  • Their findings highlight that caterpillar performance is influenced by both plant and insect genetics, with specific plant chemicals, like saponins and peptides, playing a key role, thereby contributing to theories about coevolution and dietary adaptation in herbivorous insects.
View Article and Find Full Text PDF

Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides.

View Article and Find Full Text PDF

We recently published a paper quantifying the genome-wide consequences of natural selection, including the effects of indirect selection due to the correlation of genetic regions (neutral or selected) with directly selected regions (Gompert et al., 2022). In their critique of our paper, Charlesworth and Jensen (2022) make two main points: (i) indirect selection is equivalent to hitchhiking and thus well documented (i.

View Article and Find Full Text PDF