Phosphatidic acid (PA) is a key bioactive glycerophospholipid that is implicated in the regulation of vital cell functions such as cell growth, differentiation, and migration, and is involved in a variety of pathologic processes. However, the molecular mechanisms by which PA exerts its pathophysiological actions are incompletely understood. In the present work, we demonstrate that PA stimulates the migration of the human non-small cell lung cancer (NSCLC) A549 adenocarcinoma cells, as determined by the transwell migration assay.
View Article and Find Full Text PDFSulfonamides have been related to drug-induced acute angle closure of the eye, but scarce reports exist concerning furosemide. We describe the second case of acute chamber narrowing (ACN) during furosemide exposure. A 65-year-old man with a renal transplant presented with ACN, after 3 months of furosemide intake.
View Article and Find Full Text PDFCancer cells rewire their metabolic programs to favor biological processes that promote cell survival, proliferation, and dissemination. Among this relevant reprogramming, sphingolipid metabolism provides metabolites that can favor or oppose these hallmarks of cancer. The sphingolipid ceramide 1-phosphate (C1P) and the enzyme responsible for its biosynthesis, ceramide kinase (CERK), are well established regulators of cell growth and survival in normal, as well as malignant cells through stress-regulated signaling pathways.
View Article and Find Full Text PDFLeishmaniasis and Chagas diseases are two of the most important parasitic diseases in the world. Both belong to the category of Neglected Tropical Diseases, and they cannot be prevented by vaccination. Their treatments are founded in outdated drugs that possess many pernicious side-effects and they're not easy to administer.
View Article and Find Full Text PDFProstate cancer (PCa) is one of the most prevalent cancers in men. Androgen receptor signaling plays a major role in this disease, and androgen deprivation therapy is a common therapeutic strategy in recurrent disease. Sphingolipid metabolism plays a central role in cell death, survival, and therapy resistance in cancer.
View Article and Find Full Text PDFCeramide is a bioactive sphingolipid involved in numerous cellular processes. In addition to being the precursor of complex sphingolipids, ceramides can act as second messengers, especially when they are generated at the plasma membrane of cells. Its metabolic dysfunction may lead to or be a consequence of an underlying disease.
View Article and Find Full Text PDFCeramide 1-phosphate (C1P) is a bioactive sphingolipid that is implicated in the regulation of vital cellular functions and plays key roles in a number of inflammation-associated pathologies. C1P was first described as mitogenic for fibroblasts and macrophages and was later found to promote cell survival in different cell types. The mechanisms involved in the mitogenic actions of C1P include activation of MEK/ERK1-2, PI3K/Akt/mTOR, or PKC-α, whereas promotion of cell survival required a substantial reduction of ceramide levels through inhibition of serine palmitoyl transferase or sphingomyelinase activities.
View Article and Find Full Text PDFPhosphatidic acid (PA) is a bioactive phospholipid capable of regulating key biological functions, including neutrophil respiratory burst, chemotaxis, or cell growth and differentiation. However, the mechanisms whereby PA exerts these actions are not completely understood. In this work, we show that PA stimulates myoblast proliferation, as determined by measuring the incorporation of [H]thymidine into DNA and by staining the cells with crystal violet.
View Article and Find Full Text PDFSphingolipids are a class of complex lipids containing a backbone of sphingoid bases, namely the organic aliphatic amino alcohol sphingosine (Sph), that are essential constituents of eukaryotic cells. They were first described as major components of cell membrane architecture, but it is now well established that some sphingolipids are bioactive and can regulate key biological functions. These include cell growth and survival, cell differentiation, angiogenesis, autophagy, cell migration, or organogenesis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2020
Phosphatidylethanolamine N-methyltransferase (PEMT) is a small integral membrane protein that converts phosphatidylethanolamine (PE) into phosphatidylcholine (PC). It has been previously reported that, unexpectedly, PEMT deficiency protected from high-fat diet (HFD)-induced obesity and insulin resistance, pointing to a possible role of this enzyme in the regulation of adipose cell metabolism. Using mouse 3T3-L1 preadipocytes as a biological system, we demonstrate that PEMT expression is strongly increased during the differentiation of preadipocytes into mature adipose cells.
View Article and Find Full Text PDFGene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
April 2020
The bioactive sphingolipid ceramide 1-phosphate (C1P) regulates key physiologic cell functions and is implicated in a number of metabolic alterations and pathological processes. Initial studies using different types of fibroblasts and monocytes/macrophages revealed that C1P was mitogenic and that it promoted cell survival through inhibition of apoptosis. Subsequent studies implicated C1P in inflammatory responses with a specific role as pro-inflammatory agent.
View Article and Find Full Text PDFThe PPARγ coactivator 1 alpha (PGC1α) is a prostate tumor suppressor that controls the balance between anabolism and catabolism. PGC1A downregulation in prostate cancer is causally associated with the development of metastasis. Here we show that the transcriptional complex formed by PGC1α and estrogen-related receptor 1 alpha (ERRα) controls the aggressive properties of prostate cancer cells.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2019
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis.
View Article and Find Full Text PDFWe showed previously that ceramide kinase (CerK) expression increases during adipogenesis pointing to a relevant role of intracellular C1P in this process. In the present work we demonstrate that administration of exogenous C1P inhibits the differentiation of 3T3-L1 pre-adipocytes into mature adipocytes through a mechanism involving activation of extracellularly regulated kinases (ERK) 1-2. Exogenous C1P reduced the accumulation of lipid droplets and the content of triacylglycerol in these cells, and potently inhibited the expression of the early and late adipogenic markers C/EBPβ and PPARγ, respectively.
View Article and Find Full Text PDFWith the advent of OMICs technologies, both individual research groups and consortia have spear-headed the characterization of human samples of multiple pathophysiologic origins, resulting in thousands of archived genomes and transcriptomes. Although a variety of web tools are now available to extract information from OMICs data, their utility has been limited by the capacity of nonbioinformatician researchers to exploit the information. To address this problem, we have developed CANCERTOOL, a web-based interface that aims to overcome the major limitations of public transcriptomics dataset analysis for highly prevalent types of cancer (breast, prostate, lung, and colorectal).
View Article and Find Full Text PDFAdv Cancer Res
September 2019
Ceramide 1-phosphate (C1P) is a pleiotropic bioactive sphingolipid metabolite capable of regulating key physiologic cell functions and promoting pathologic processes. Concerning pathology, C1P or ceramide kinase (CerK), the enzyme responsible for its biosynthesis in mammalian cells, has been implicated in cancer cell growth, survival, and dissemination and is involved in inflammatory responses associated with different types of cancer cells. The mechanisms or signaling pathways mediating these C1P actions have only been partially described.
View Article and Find Full Text PDFStudy Question: Is ceramide-1-phosphate (C1P) an ovarian protective agent during alkylating chemotherapy?
Summary Answer: Local administration of C1P drastically reduces ovarian damage induced by cyclophosphamide (Cy) via protection of follicular reserve, restoration of hormone levels, inhibition of apoptosis and improvement of stromal vasculature, while protecting fertility, oocyte quality and uterine morphology.
What Is Known Already: Cancer-directed therapies cause accelerated loss of ovarian reserve and lead to premature ovarian failure (POF). Previous studies have demonstrated that C1P regulates different cellular processes including cell proliferation, cell migration, angiogenesis and apoptosis.
Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response.
View Article and Find Full Text PDFSphingolipids are not only crucial for membrane architecture but act as critical regulators of cell functions. The bioactive sphingolipid ceramide 1-phosphate (C1P), generated by the action of ceramide kinase, has been reported to stimulate cell proliferation, cell migration and to regulate inflammatory responses via activation of different signaling pathways. We have previously shown that skeletal muscle is a tissue target for C1P since the phosphosphingolipid plays a positive role in myoblast proliferation implying a role in muscle regeneration.
View Article and Find Full Text PDFThe nuclear receptor PPAR-β/δ (PPARD) has essential roles in fatty acid catabolism and energy homeostasis as well as cell differentiation, inflammation, and metabolism. However, its contributions to tumorigenesis are uncertain and have been disputed. Here, we provide evidence of tumor suppressive activity of PPARD in prostate cancer through a noncanonical and ligand-independent pathway.
View Article and Find Full Text PDFThe bioactive sphingolipid ceramide 1-phosphate (C1P) regulates cell division in a variety of cell types including macrophages. However, the mechanisms involved in this action are not completely understood. In the present work we show that C1P stimulates the release of vascular endothelial growth factor (VEGF) in RAW264.
View Article and Find Full Text PDFCeramide kinase (CerK) plays a critical role in the regulation of cell growth and survival and has been implicated in proinflammatory responses. In this work, we demonstrate that CerK regulates adipocyte differentiation, a process associated with obesity, which causes chronic low-grade inflammation. CerK was upregulated during differentiation of 3T3-L1 preadipocytes into mature adipocytes.
View Article and Find Full Text PDFFolic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet.
View Article and Find Full Text PDFCell migration is a complex biological function involved in both physiologic and pathologic processes. Although this is a subject of intense investigation, the mechanisms by which cell migration is regulated are not completely understood. In this study we show that the bioactive sphingolipid ceramide 1-phosphate (C1P), which is involved in inflammatory responses, causes upregulation of metalloproteinases (MMP) -2 and -9 in J774A.
View Article and Find Full Text PDF