Publications by authors named "Gomez-Lopez G"

Breast cancer patients are categorized into three subtypes with distinct treatment approaches. Precision oncology has increased patient outcomes by targeting the specific molecular alterations of tumours, yet challenges remain. Treatment failure persists due to the coexistence of several malignant subpopulations with different drug sensitivities within the same tumour, a phenomenon known as intratumour heterogeneity (ITH).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on pancreatic ductal adenocarcinoma (PDAC) and how cancer stem cells (CSCs) contribute to its aggressive nature and resistance to therapies, particularly immune checkpoint inhibitors.
  • Researchers used a mouse model and primary tumor cell lines to identify CSC populations and their immune evasion strategies, discovering that the gene peptidoglycan recognition protein 1 (PGLYRP1) is significantly overexpressed in these cells.
  • The findings suggest PGLYRP1 plays a key role in helping CSCs evade immune responses, highlighting its potential as a new target for immunotherapy in PDAC patients.
View Article and Find Full Text PDF

Variation in offspring sex ratio, particularly in birds, has been frequently studied over the last century, although seldom using long-term monitoring data. In raptors, the cost of raising males and females is not equal, and several variables have been found to have significant effects on sex ratio, including food availability, parental age, and hatching order. Sex ratio differences between island populations and their mainland counterparts have been poorly documented, despite broad scientific literature on the island syndrome reporting substantial differences in population demography and ecology.

View Article and Find Full Text PDF
Article Synopsis
  • Variation in offspring sex ratios among animal species is well-studied, especially in birds with pronounced differences between sexes, but less is known about species like the monomorphic griffon vulture that lay single eggs.
  • Researchers analyzed data from three breeding populations in central Spain over 30 years to assess factors affecting the sex ratio of nestling vultures, finding no overall deviations from parity.
  • They discovered that tree-nesting breeders might produce more male offspring, but due to small sample sizes, more research is needed to clarify these findings and their implications for vulture population dynamics.
View Article and Find Full Text PDF

Genomics studies routinely confront researchers with long lists of tumor alterations detected in patients. Such lists are difficult to interpret since only a minority of the alterations are relevant biomarkers for diagnosis and for designing therapeutic strategies. PanDrugs is a methodology that facilitates the interpretation of tumor molecular alterations and guides the selection of personalized treatments.

View Article and Find Full Text PDF

Precision oncology research is challenging outside the contexts of oncogenic addiction and/or targeted therapies. We previously showed that phosphoproteomics is a powerful approach to reveal patient subsets of interest characterized by the activity of a few kinases where the underlying genomics is complex. Here, we conduct a phosphoproteomic screening of samples from HER2-negative female breast cancer receiving neoadjuvant paclitaxel (N = 130), aiming to find candidate biomarkers of paclitaxel sensitivity.

View Article and Find Full Text PDF

Despite being frequently observed in cancer cells, chromosomal instability (CIN) and its immediate consequence, aneuploidy, trigger adverse effects on cellular homeostasis that need to be overcome by anti-stress mechanisms. As such, these safeguard responses represent a tumor-specific Achilles heel, since CIN and aneuploidy are rarely observed in normal cells. Recent data have revealed that epitranscriptomic marks catalyzed by RNA-modifying enzymes change under various stress insults.

View Article and Find Full Text PDF

Tumour heterogeneity is one of the main characteristics of cancer and can be categorised into inter- or intratumour heterogeneity. This heterogeneity has been revealed as one of the key causes of treatment failure and relapse. Precision oncology is an emerging field that seeks to design tailored treatments for each cancer patient according to epidemiological, clinical and omics data.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic is one of the biggest health challenges of recent decades. Among the causes of mortality triggered by SARS-CoV-2 infection, the development of an inflammatory "cytokine storm" (CS) plays a determinant role. Here, we used transcriptomic data from the bronchoalveolar lavage fluid (BALF) of COVID-19 patients undergoing a CS to obtain gene-signatures associated to this pathology.

View Article and Find Full Text PDF

We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection.

View Article and Find Full Text PDF

Summary: bollito is an automated, flexible and parallelizable computational pipeline for the comprehensive analysis of single-cell RNA-seq data. Starting from FASTQ files or preprocessed expression matrices, bollito performs both basic and advanced tasks in single-cell analysis integrating >30 state-of-the-art tools. This includes quality control, read alignment, dimensionality reduction, clustering, cell-marker detection, differential expression, functional analysis, trajectory inference and RNA velocity.

View Article and Find Full Text PDF

Background: Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified resource is imperative to assist researchers in this field.

View Article and Find Full Text PDF

Rank signaling enhances stemness in mouse and human mammary epithelial cells (MECs) and mediates mammary tumor initiation. Mammary tumors initiated by oncogenes or carcinogen exposure display high levels of Rank and Rank pathway inhibitors have emerged as a new strategy for breast cancer prevention and treatment. Here, we show that ectopic Rank expression in the mammary epithelia unexpectedly delays tumor onset and reduces tumor incidence in the oncogene-driven Neu and PyMT models.

View Article and Find Full Text PDF

The Notch pathway is highly active in almost all patients with T-cell acute lymphoblastic leukemia (T-ALL), but the implication of Notch ligands in T-ALL remains underexplored. We used a genetic mouse model of Notch ligand delta like 4 (DLL4)-driven T-ALL and performed thymectomies and splenectomies in those animals. We also used several patient-derived T-ALL (PDTALL) models, including one with DLL4 expression on the membrane and we treated PDTALL cells and with demcizumab, a blocking antibody against human DLL4 currently being tested in clinical trials in patients with solid cancer.

View Article and Find Full Text PDF

An open question in aggressive cancers such as melanoma is how malignant cells can shift the immune system to pro-tumorigenic functions. Here we identify midkine (MDK) as a melanoma-secreted driver of an inflamed, but immune evasive, microenvironment that defines poor patient prognosis and resistance to immune checkpoint blockade. Mechanistically, MDK was found to control the transcriptome of melanoma cells, allowing for coordinated activation of nuclear factor-κB and downregulation of interferon-associated pathways.

View Article and Find Full Text PDF

Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation.

View Article and Find Full Text PDF

KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells.

View Article and Find Full Text PDF

Motivation: Drug immunomodulation modifies the response of the immune system and can be therapeutically exploited in pathologies such as cancer and autoimmune diseases.

Results: DREIMT is a new hypothesis-generation web tool, which performs drug prioritization analysis for immunomodulation. DREIMT provides significant immunomodulatory drugs targeting up to 70 immune cells subtypes through a curated database that integrates 4960 drug profiles and ∼2600 immune gene expression signatures.

View Article and Find Full Text PDF

The crosstalk between cancer cells and the tumor microenvironment has been implicated in cancer progression and metastasis. Fibroblasts and immune cells are widely known to be attracted to and modified by cancer cells. However, the role of pericytes in the tumor microenvironment beyond endothelium stabilization is poorly understood.

View Article and Find Full Text PDF

HER2-positive breast cancer is currently managed with chemotherapy in combination with specific anti-HER2 therapies, including trastuzumab. However, a high percentage of patients with HER2-positive tumors do not respond to trastuzumab (primary resistance) or either recur (acquired resistance), mostly due to molecular alterations in the tumor that are either unknown or undetermined in clinical practice. Those alterations may cause the tumor to be refractory to treatment with trastuzumab, promoting tumor proliferation and metastasis.

View Article and Find Full Text PDF
Article Synopsis
  • Trastuzumab is a key drug for treating HER2-positive breast cancer, but patients often develop resistance, spurring this research to explore the underlying mechanisms.
  • Researchers created a lab model to study trastuzumab-resistant cancer cells and utilized a multi-omic approach to identify significant gene and protein changes, particularly in the Hippo pathway, associated with resistance.
  • They discovered that altered YAP1 signaling correlated with worse patient outcomes, suggesting that combining treatment targeting both HER2 and the Hippo pathway could enhance the effectiveness of trastuzumab and counter resistance.
View Article and Find Full Text PDF

FMS-like tyrosine kinase 3 (FLT3) is a key driver of acute myeloid leukemia (AML). Several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been evaluated clinically, but their effects are limited when used in monotherapy due to the emergence of drug-resistance. Thus, a better understanding of drug-resistance pathways could be a good strategy to explore and evaluate new combinational therapies for AML.

View Article and Find Full Text PDF

Background: Solid tumour growth is the consequence of a complex interplay between cancer cells and their microenvironment. Recently, a new global transcriptomic immune classification of solid tumours has identified six immune subtypes (ISs) (C1-C6). Our aim was to specifically characterise ISs in colorectal cancer (CRC) and assess their interplay with the consensus molecular subtypes (CMSs).

View Article and Find Full Text PDF

In silico drug prescription tools for precision cancer medicine can match molecular alterations with tailored candidate treatments. These methodologies require large and well-annotated datasets to systematically evaluate their performance, but this is currently constrained by the lack of complete patient clinicopathological data. Moreover, in silico drug prescription performance could be improved by integrating additional tumour information layers like intra-tumour heterogeneity (ITH) which has been related to drug response and tumour progression.

View Article and Find Full Text PDF

Cohesin exists in two variants carrying either STAG/SA1 or SA2. Here we have addressed their specific contributions to the unique spatial organization of the mouse embryonic stem cell genome, which ensures super-enhancer-dependent transcription of pluripotency factors and repression of lineage-specification genes within Polycomb domains. We find that cohesin-SA2 facilitates Polycomb domain compaction through Polycomb repressing complex 1 (PRC1) recruitment and promotes the establishment of long-range interaction networks between distant Polycomb-bound promoters that are important for gene repression.

View Article and Find Full Text PDF