We have previously reported on the targeting of diclofenac sodium in joint inflammation using gelatin magnetic microspheres. To overcome complications in the administration of magnetic microspheres and achieve higher targeting efficiency, the present work focuses on the formulation of gelatin microspheres for intra-articular administration. Drug-loaded microspheres were prepared by the emulsification/cross-linking method, characterized by drug loading, size distribution, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gas chromatography, and in vitro release studies.
View Article and Find Full Text PDFIn the present work, we have attempted to deliver diclofenac sodium to a target site by intra-arterial injection of gelatin magnetic microspheres and subsequent localization using an external magnet. Drug-loaded magnetic microspheres were prepared by emulsification/cross-linking method, characterized by drug loading, magnetite content, size distribution, optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) analysis, differential scanning calorimetry (DSC), X-ray diffraction (XRD), absence of glutaraldehyde by gas chromatography, and in vitro release studies. The targeting efficiency and the therapeutic efficacy of microspheres were studied in vivo in rabbits.
View Article and Find Full Text PDFIn the present work, an attempt was made to target diclofenac sodium to its site of action through magnetic gelatin microspheres. The gelatin magnetic microspheres loaded with 8.9% w/w of diclofenac sodium and 28.
View Article and Find Full Text PDF