Publications by authors named "Golowasch J"

Capacitance of biological membranes is determined by the properties of the lipid portion of the membrane as well as the morphological features of a cell. In neurons, membrane capacitance is a determining factor of synaptic integration, action potential propagation speed, and firing frequency due to its direct effect on the membrane time constant. Besides slow changes associated with increased morphological complexity during postnatal maturation, neuronal membrane capacitance is considered a stable, non-regulated, and constant magnitude.

View Article and Find Full Text PDF

Robustness of neuronal activity is a property necessary for a neuronal network to withstand perturbations, which may otherwise disrupt or destroy the system. The robustness of complex systems has been shown to depend on a number of features of the system, including morphology and heterogeneity of the activity of the component neurons, size of the networks, synaptic connectivity, and neuromodulation. The activity of small networks, such as the pyloric network of the crustacean stomatogastric nervous system, appears to be robust despite some of the factors not being consistent with the expected properties of complex systems, e.

View Article and Find Full Text PDF

In oscillatory circuits, some actions of neuromodulators depend on the oscillation frequency. However, the mechanisms are poorly understood. We explored this problem by characterizing neuromodulation of the lateral pyloric (LP) neuron of the crab stomatogastric ganglion (STG).

View Article and Find Full Text PDF
Article Synopsis
  • Neurons produce stable activity patterns by using various ionic currents and adjusting conductance levels.
  • The regulation of this variability is crucial for maintaining proper function.
  • This regulation primarily relies on the activity of the neurons themselves.
View Article and Find Full Text PDF

Neuromodulators play an important role in how the nervous system organizes activity that results in behavior. Disruption of the normal patterns of neuromodulatory release or production is known to be related to the onset of severe pathologies such as Parkinson's disease, Rett syndrome, Alzheimer's disease, and affective disorders. Some of these pathologies involve neuronal structures that are called central pattern generators (CPGs), which are involved in the production of rhythmic activities throughout the nervous system.

View Article and Find Full Text PDF

Ionic currents, whether measured as conductance amplitude or as ion channel transcript numbers, can vary many-fold within a population of identified neurons. In invertebrate neuronal types multiple currents can be seen to vary while at the same time their magnitudes are correlated. These conductance amplitude correlations are thought to reflect a tight homeostasis of cellular excitability that enhances the robustness and stability of neuronal activity over long stretches of time.

View Article and Find Full Text PDF
Article Synopsis
  • Regenerative inward currents contribute to slow oscillations in specific neurons by creating a linear negative conductance, allowing for distinct oscillatory behavior.
  • The study focused on crab neurons, revealing that pacemaker neurons like the pyloric dilator (PD) can generate these oscillations, while follower neurons (like LP and VD) cannot without alterations to their current levels.
  • Key findings highlight that high-threshold potassium currents inhibit oscillations, underscoring the significance of balancing inward and outward currents for sustaining rhythmic neuronal activity.
View Article and Find Full Text PDF

The neuromodulator-gated current () found in the crab stomatogastric ganglion is activated by neuromodulators that are essential to induce the rhythmic activity of the pyloric network in this system. One of these neuromodulators is also known to control the correlated expression of voltage-gated ionic currents in pyloric neurons, as well as synaptic plasticity and strength. Thus understanding the mechanism by which neuromodulator receptors activate should provide insights not only into how oscillations are initiated but also into how other processes, and currents not directly activated by them, are regulated.

View Article and Find Full Text PDF

Rhythmic oscillation in neurons can be characterized by various attributes, such as the oscillation period and duty cycle. The values of these features depend on the amplitudes of the participating ionic currents, which can be characterized by their maximum conductance values. Recent experimental and theoretical work has shown that the values of these attributes can be maintained constant for different combinations of two or more ionic currents of varying conductances, defining what is known as level sets in conductance space.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the neuromodulatory inward current (IMI) in crab neurons affects pyloric network oscillation, particularly focusing on its voltage dependence and the role of calcium.
  • It finds that intracellular calmodulin is necessary, but not solely responsible for maintaining this voltage dependence under varying calcium levels.
  • The research proposes that the calcium-sensing receptor (CaSR), along with specific signaling pathways, significantly influences IMI voltage dependence through endocytosis and downstream molecules like myosin light chain kinase and Gβγ-subunits.
View Article and Find Full Text PDF

Identified neurons in different animals express ionic currents at highly variable levels (population variability). If neuronal identity is associated with stereotypical function, as is the case in genetically identical neurons or in unambiguously identified individual neurons, this variability poses a conundrum: How is activity the same if the components that generate it-ionic current levels-are different? In some cases, ionic current variability across similar neurons generates an output gradient. However, many neurons produce very similar output activity, despite substantial variability in ionic conductances.

View Article and Find Full Text PDF

Neuronal oscillatory activity is generated by a combination of ionic currents, including at least one inward regenerative current that brings the cell towards depolarized voltages and one outward current that repolarizes the cell. Such currents have traditionally been assumed to require voltage-dependence. Here we test the hypothesis that the voltage dependence of the regenerative inward current is not necessary for generating oscillations.

View Article and Find Full Text PDF

Ionic conductances in identified neurons are highly variable. This poses the crucial question of how such neurons can produce stable activity. Coexpression of ionic currents has been observed in an increasing number of neurons in different systems, suggesting that the coregulation of ionic channel expression, by thus linking their variability, may enable neurons to maintain relatively constant neuronal activity as suggested by a number of recent theoretical studies.

View Article and Find Full Text PDF

We performed whole-cell recordings from basal forebrain (BF) cholinergic neurons in transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the choline acetyltransferase promoter. BF cholinergic neurons can be differentiated into two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing neurons (∼70%) are more excitable, show prominent spike frequency adaptation and are more susceptible to depolarization blockade, a phenomenon characterized by complete silencing of the neuron following initial action potentials.

View Article and Find Full Text PDF

Neuronal identity depends on the regulated expression of numerous molecular components, especially ionic channels, which determine the electrical signature of a neuron. Such regulation depends on at least two key factors, activity itself and neuromodulatory input. Neuronal electrical activity can modify the expression of ionic currents in homeostatic or nonhomeostatic fashion.

View Article and Find Full Text PDF
Article Synopsis
  • The pyloric network in decapod crustaceans shows significant changes in rhythmic activity under different conditions, relying on neuromodulatory input from the central nervous system to function normally.
  • When this input is removed, the activity initially ceases but eventually resumes episodically before stabilizing into a pattern similar to normal activity (recovery).
  • The study utilizes a model involving two types of ionic conductance regulation—one dependent on activity and the other on neuromodulators—to explain this recovery, highlighting the importance of variability in cellular signaling and the role of intracellular calcium levels.
View Article and Find Full Text PDF

Linear leak currents have been implicated in the regulation of neuronal excitability, generation of neuronal and network oscillations, and network state transitions. Yet, few studies have directly tested the dependence of network oscillations on leak currents or explored the role of leak currents on network activity. In the oscillatory pyloric network of decapod crustaceans neuromodulatory inputs are necessary for pacemaker activity.

View Article and Find Full Text PDF

During growth or degeneration neuronal surface area can change dramatically. Measurements of membrane protein concentration, as in ion channel or ionic conductance density, are often normalized by membrane capacitance, which is proportional to the surface area, to express changes independently from cell surface variations. Several electrophysiological protocols are used to measure cell capacitance, all based on the assumption of membrane isopotentiality.

View Article and Find Full Text PDF

Central pattern generators (CPGs) are neuronal networks that control vitally important rhythmic behaviors including breathing, heartbeat, and digestion. Understanding how CPGs recover activity after their rhythmic activity is disrupted has important theoretical and practical implications. Previous experimental and modeling studies indicated that rhythm recovery after central neuromodulatory input loss (decentralization) could be based entirely on activity-dependent mechanisms, but recent evidence of long-term conductance regulation by neuromodulators suggest that neuromodulator-dependent mechanisms may also be involved.

View Article and Find Full Text PDF

Gap junctions are known to be important for many network functions such as synchronization of activity and the generation of waves and oscillations. Gap junctions have also been proposed to be essential for the generation of early embryonic activity. We have previously shown that the amplitude of electrical signals propagating across gap-junctionally coupled passive cables is maximized at a unique diameter.

View Article and Find Full Text PDF

Electrical activity in identical neurons across individuals is often remarkably similar and stable over long periods. However, the ionic currents that determine the electrical activity of these neurons show wide animal-to-animal amplitude variability. This seemingly random variability of individual current amplitudes may obscure mechanisms that globally reduce variability and that contribute to the generation of similar neuronal output.

View Article and Find Full Text PDF

Neurons exhibit long-term excitability changes necessary for maintaining proper cell and network activity in response to various inputs and perturbations. For instance, the adult crustacean pyloric network can spontaneously recover rhythmic activity after complete shutdown resulting from permanent removal of neuromodulatory inputs. Dissociated lobster stomatogastric ganglion (STG) neurons have been shown to spontaneously develop oscillatory activity via excitability changes.

View Article and Find Full Text PDF

We analyze simple morphological configurations that represent gap-junctional coupling between neuronal processes or between muscle fibers. Specifically, we use cable theory and simulations to examine the consequences of current flow from one cable to other gap-junctionally coupled passive cables. When the proximal end of the first cable is voltage clamped, the amplitude of the electrical signal in distal portions of the second cable depends on the cable diameter.

View Article and Find Full Text PDF