Biopharmaceuticals, such as monoclonal antibodies (mAbs), need to maintain their chemical and physical stability in formulations throughout their lifecycle. It is known that exposure of mAbs to light, particularly UV, triggers chemical and physical degradation, which can be exacerbated by trace amounts of photosensitizers in the formulation. Although routine assessments of degradation following defined UV dosages are performed, there is a fundamental lack of understanding regarding the intermediates, transient reactive species, and radicals formed during illumination, as well as their lifetimes and immediate impact post-illumination.
View Article and Find Full Text PDFPhotochemical ligand release from metal complexes may be exploited in the development of novel photoactivated chemotherapy agents for the treatment of cancer and other diseases. Highly intriguing photochemical behavior is reported for two ruthenium(II) complexes bearing conformationally flexible 1,2,3-triazole-based ligands incorporating a methylene spacer to form 6-membered chelate rings. [Ru(bpy)(pictz)] () and [Ru(bpy)(btzm)] () (bpy = 2,2'-bipyridyl; pictz = 1-(picolyl)-4-phenyl-1,2,3-triazole; btzm = bis(4-phenyl-1,2,3-triazol-4-yl)methane) exhibit coordination by the triazole ring through the less basic N2 atom as a consequence of chelation and readily undergo photochemical release of the pictz and btzm ligands (ϕ = 0.
View Article and Find Full Text PDFThis paper presents the first experimental realization of a scheme that allows for the tuning of the velocity of peak intensity of a focal spot with relativistic intensity. By combining a tunable pulse-front curvature with the axial intensity deposition characteristics of an axiparabola, an aspheric optical element, this system provides control over the dynamics of laser-wakefield accelerators. We demonstrate the ability to modify the velocity of peak intensity of ultrashort laser pulses to be superluminal or subluminal.
View Article and Find Full Text PDFIllumination into an electron paramagnetic resonance (EPR) spectrometer is commonly carried out through the optical window, perpendicular to the sample and magnetic field. Here we show that significant improvements can be obtained by using the walls of the EPR tube as a light guide, with the light scattered only around the sample-containing area.
View Article and Find Full Text PDFMammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear.
View Article and Find Full Text PDFThe application of microwave diamond-based HBAR as a sensor of microwave acoustic attenuation α was considered, using the Mo film as an object of research. A multilayered piezoelectric structure, as the Al/AlScN/Mo/(100) diamond/Mo, was produced using aluminum-scandium nitride composition, and was studied in detail for a number of the Mo films with different thicknesses obtained by magnetron deposition. The operational frequency band of 3.
View Article and Find Full Text PDFTherapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients.
View Article and Find Full Text PDFWe present a self-consistent theory of strongly nonlinear plasma wakefield (bubble or blowout regime of the wakefield) based on the energy conservation approach. Such wakefields are excited in plasmas by intense laser or particle beam drivers and are characterized by the expulsion of plasma electrons from the propagation axis of the driver. As a result, a spherical cavity devoid of electrons (called a "bubble") and surrounded by a thin sheath made of expelled electrons is formed behind the driver.
View Article and Find Full Text PDFTryptic proteolysis of protein micelles was studied using β-casein (β-CN) as an example. Hydrolysis of specific peptide bonds in β-CN leads to the degradation and rearrangement of the original micelles and the formation of new nanoparticles from their fragments. Samples of these nanoparticles dried on a mica surface were characterized by atomic force microscopy (AFM) when the proteolytic reaction had been stopped by tryptic inhibitor or by heating.
View Article and Find Full Text PDFCondensation of 1,5-disubstituted pent-1-en-4-yn-1-ones with arylhydrazines in acidified alcohol results mainly in the formation of the corresponding arylhydrazones with traces of the side products of cyclization at the double bond - 1,5-diaryl-3-(arylethynyl)-4,5-dihydro-1-pyrazoles (pyrazolines). Arylhydrazones are cyclized only by refluxing in high-boiling polar solvents (DMF and ethylene glycol), with the selective formation of 1,5-disubstituted 3-styrylpyrazoles in up to 77-95% yields. Thermodynamically, the cyclization of arylhydrazones at the triple bond is the most preferable pathway, as shown by DFT calculations and preparative synthesis experiments.
View Article and Find Full Text PDFEur J Pharm Biopharm
November 2022
Lipopolysaccharide (LPS) is a cell-wall component of Gram-negative bacteria which contributes to bacterial toxicity. During processes such as cell division, shedding of outer membrane vesicles, or bacterial cell death, LPS is released into the surrounding media. If such contamination got into the bloodstream, it would induce pro-inflammatory immune responses which can result in sepsis and death.
View Article and Find Full Text PDFSurfactants are commonly used in biopharmaceutical formulations to stabilize proteins against aggregation. However, the choice of a suitable surfactant for a particular protein is decided mostly empirically, and their mechanism of action on molecular level is largely unknown. Here we show that a straightforward label-free method, saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, can be used to detect protein-surfactant interactions in formulations of a model protein, interferon alpha.
View Article and Find Full Text PDFPhotocaging is an attractive strategy to control molecular behaviour, for example, in chemical synthesis, interaction studies or photodynamic therapies. Here, we demonstrate that illumination by the LED NMRtorch approach enables effective and controlled photocage release with simultaneous monitoring of subsequent reactions by solution NMR spectroscopy.
View Article and Find Full Text PDFWe propose a setup for positron acceleration consisting of an electron driver and a laser pulse creating a twofold plasma column structure. The resulting wakefield is capable of accelerating positron bunches over long distances even when the evolution of the driver is considered. The scheme is studied by means of particle-in-cell simulations.
View Article and Find Full Text PDFAn interaction of 1,5-diaryl-3-X-pent-4-yn-1-ones (where X stands for piperidin-1-yl, morpholin-4-yl, 4-methylpiperazin-1-yl) with arylhydrazines proceeds at room temperature and results in 3-aryl-5-arylethynyl-1-phenyl-4,5-dihydro-1-pyrazoles with up to 57-73% yields. Under similar conditions, the cyclocondensation of conjugated 2,4,1-enynones with arylhydrazine proceeds only in the presence of cyclic amines. 1,5-Diaryl-3-X-pent-4-yn-1-ones are reported as synthetic equivalents of conjugated 2,4,1-enynones in reactions with arylhydrazines.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) of protein solutions is increasingly recognised as an important phenomenon in cell biology and biotechnology. However, opalescence and concentration fluctuations render LLPS difficult to study, particularly when characterising the kinetics of the phase transition and layer separation. Here, we demonstrate the use of a probe molecule trifluoroethanol (TFE) to characterise the kinetics of protein LLPS by NMR spectroscopy.
View Article and Find Full Text PDFVestn Otorinolaringol
March 2022
A survey of 48 victims aged 19-36 years with explosive trauma and combined damage to the auditory system was conducted to assess the level of damage to nerve structures by analyzing the bioelectric activity of the cerebral cortex. All patients underwent electroencephalography (EEG). It is established that akubarotrauma of explosive genesis almost always leads to lesions of the function of the cortical part of the auditory analyzer.
View Article and Find Full Text PDFReaction of linear conjugated enynones, 1,5-diarylpent-2-en-4-yn-1-ones [ArC≡CCH=CHC(=O)Ar], with 3-oxo-3-phenylpropanenitrile (NCCHCOPh) in the presence of sodium methoxide MeONa as a base in MeOH at room temperature for 4-26 h affords polyfunctional δ-diketones as a product of regioselective Michael addition to the double carbon-carbon bond of starting enynones. The δ-diketones have been formed as mixtures of two diastereomers in a ratio of 2.5:1 in good general yields of 53-98%.
View Article and Find Full Text PDFHere, we describe the first systematic study on the mechanism of substrate-selective inhibition of mammalian ALOX15 orthologs. For this purpose, we prepared a series of -substituted 5-(1-indol-2-yl)anilines and found that (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamates and their monofluorinated analogues are potent and selective inhibitors of the linoleate oxygenase activity of rabbit and human ALOX15. Introduction of a 2-methoxyaniline moiety into the core pharmacophore plays a crucial role in substrate-selective inhibition of ALOX15-catalyzed oxygenation of linoleic acid at submicromolar concentrations without affecting arachidonic acid oxygenation.
View Article and Find Full Text PDFIt is shown that electrostatic plasma wakefields can efficiently radiate at harmonics of the plasma frequency when the plasma has a positive density gradient along the propagation direction of a driver. The driver propagating at a subluminal group velocity excites the plasma wakefield with the same phase velocity. However, due to the positive density gradient, the wake phase velocity steadily increases behind the driver.
View Article and Find Full Text PDFSubcutaneous injection of a low volume (<2 mL) high concentration (>100 mg/mL) formulation is an attractive administration strategy for monoclonal antibodies (mAbs) and other biopharmaceutical proteins. Using concentrated solutions may also be beneficial at various stages of bioprocessing. However, concentrating proteins by conventional techniques, such as ultrafiltration, can be time consuming and challenging.
View Article and Find Full Text PDFBackground: RS75091 is a cinnamic acid derivative that has been used for the crystallization of the rabbit ALOX15-inhibitor complex. The atomic coordinates of the resolved ALOX15- inhibitor complex were later on used to define the binding sites of other mammalian lipoxygenase orthologs, for which no direct structural data with ligand has been reported so far.
Introduction: The putative binding pocket of the human ALOX5 was reconstructed on the basis of its structural alignment with rabbit ALOX15-RS75091 inhibitor.