Parkinson's disease (PD) is one of the key neurodegenerative disorders caused by a dopamine deficiency in the striatum due to the death of dopaminergic (DA) neurons of the substantia nigra pars compacta. The initially discovered A53T mutation in the alpha-synuclein gene was linked to the formation of cytotoxic aggregates: Lewy bodies in the DA neurons of PD patients. Further research has contributed to the discovery of beta- and gamma-synucleins, which presumably compensate for the functional loss of either member of the synuclein family.
View Article and Find Full Text PDFAggregated forms of α-synuclein are core components of pathohistological inclusions known as Lewy bodies in substantia nigra (SN) neurons of patients with Parkinson's disease (PD). The role of α-synuclein in selective loss of SN dopaminergic neurons (DNs) in PD is studied in mice knocked out in the α-synuclein gene. The new mouse strain delta flox KO with a constitutive knockout of the α-synuclein gene models the end point of in vivo deletion of the α-synuclein gene in mice with a conditional knockout and has no foreign sequence in the modified genomic locus, thus differing from all other α-synuclein knockout mouse strains.
View Article and Find Full Text PDFMultimerin-1 (Mmrn-1) is a soluble protein, also known as elastin microfibril interfacer 4 (EMILIN-4), found in platelets and in the endothelium of blood vessels. Its function and role in pathology are still not fully understood. Genetic modifications in alpha-synuclein gene (Snca) locus that mapped 160 Kb apart from Mmrn-1 in mouse genome, could weigh with regulatory elements of Mmrn-1 gene.
View Article and Find Full Text PDFPrevious studies of the alpha-synuclein null mutant mice on the C57Bl6 genetic background have revealed reduced number of dopaminergic neurons in their substantia nigra pars compacta (SNpc). However, the presence in genomes of the studied mouse lines of additional genetic modifications that affect expression of genes located in a close proximity to the alpha-synuclein-encoding Snca gene makes these data open to various interpretations. To unambiguously demonstrate that the absence of alpha-synuclein is the primary cause of the observed deficit of dopaminergic neurons, we employed a recently produced constituent alpha-synuclein knockout mouse line B6(Cg)-Snca/J.
View Article and Find Full Text PDFIn the present study, we analyzed the uptake of radiolabeled dopamine by intact synaptosomes and purified synaptic vesicles isolated from the dorsal striatum of mice with constitutive inactivation of all three synuclein-coding genes and wild-type mice. Synuclein deficiency substantially compromised the uptake of this neurotransmitter by synaptic vesicles but had no effect on synaptosomal dopamine uptake.
View Article and Find Full Text PDFLesion of the dopaminergic neurons of the nigrostriatal system is a key feature of Parkinson's disease (PD). Alpha-synuclein is a protein that is a major component of Lewy bodies, histopathological hallmarks of PD, and is involved in regulation of dopamine (DA) neurotransmission. Previous studies of knockout mice have shown that inactivation of alpha-synuclein gene can lead to the reduction in number of DA neurons in the substantia nigra (SN).
View Article and Find Full Text PDF