IEEE Trans Instrum Meas
January 2024
Rhombohedral polytype transition metal dichalcogenide (TMDC) multilayers exhibit non-centrosymmetric interlayer stacking, which yields intriguing properties such as ferroelectricity, a large second-order susceptibility coefficient χ, giant valley coherence, and a bulk photovoltaic effect. These properties have spurred significant interest in developing phase-selective growth methods for multilayer rhombohedral TMDC films. Here, we report a confined-space, hybrid metal-organic chemical vapor deposition method that preferentially grows 3R-WS multilayer films with thickness up to 130 nm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
The electronic properties of moiré heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided experimental observation of orbital ferromagnetism. To create samples with aligned graphene/hBN, researchers often align edges of exfoliated flakes that appear straight in optical micrographs.
View Article and Find Full Text PDFTwo-dimensional (2D) semiconducting transition-metal dichalcogenides (TMDCs) are an exciting platform for excitonic physics and next-generation electronics, creating a strong demand to understand their growth, doping, and heterostructures. Despite significant progress in solid-source (SS-) and metal-organic chemical vapor deposition (MOCVD), further optimization is necessary to grow highly crystalline 2D TMDCs with controlled doping. Here, we report a hybrid MOCVD growth method that combines liquid-phase metal precursor deposition and vapor-phase organo-chalcogen delivery to leverage the advantages of both MOCVD and SS-CVD.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important.
View Article and Find Full Text PDFQuantum coherence of electrons can produce striking behaviors in mesoscopic conductors. Although magnetic order can also strongly affect transport, the combination of coherence and magnetic order has been largely unexplored. Here, we examine quantum coherence-driven universal conductance fluctuations in the antiferromagnetic, canted antiferromagnetic, and ferromagnetic phases of a thin film of the topological material MnBiTe.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
Anisotropic hopping in a toy Hofstadter model was recently invoked to explain a rich and surprising Landau spectrum measured in twisted bilayer graphene away from the magic angle. Suspecting that such anisotropy could arise from unintended uniaxial strain, we extend the Bistritzer-MacDonald model to include uniaxial heterostrain and present a detailed analysis of its impact on band structure and magnetotransport. We find that such strain strongly influences band structure, shifting the three otherwise-degenerate van Hove points to different energies.
View Article and Find Full Text PDFABC-stacked trilayer graphene on boron nitride (ABC-TLG/hBN) moiré superlattices provides a tunable platform for exploring Wigner crystal states in which the electron correlation can be controlled by electric and magnetic fields. Here we report the observation of magnetic field-stabilized Wigner crystal states in a ABC-TLG/hBN. We show that correlated insulating states emerge at multiple fractional and integer fillings corresponding to ν = /, /, 1, /, /, and 2 electrons per moiré lattice site under a magnetic field.
View Article and Find Full Text PDFQuantum impurity models with frustrated Kondo interactions can support quantum critical points with fractionalized excitations. Recent experiments [W. Pouse et al.
View Article and Find Full Text PDFA Kondo lattice is often electrically insulating at low temperatures. However, several recent experiments have detected signatures of bulk metallicity within this Kondo insulating phase. In this study, we visualized the real-space charge landscape within a Kondo lattice with atomic resolution using a scanning tunneling microscope.
View Article and Find Full Text PDFWe present the design and implementation of a measurement system that enables parallel drive and detection of small currents and voltages at numerous electrical contacts to a multi-terminal electrical device. This system, which we term a feedback lock-in, combines digital control-loop feedback with software-defined lock-in measurements to dynamically source currents and measure small, pre-amplified potentials. The effective input impedance of each current/voltage probe can be set via software, permitting any given contact to behave as an open-circuit voltage lead or as a virtually grounded current source/sink.
View Article and Find Full Text PDFIdeally, quantum anomalous Hall systems should display zero longitudinal resistance. Yet in experimental quantum anomalous Hall systems elevated temperature can make the longitudinal resistance finite, indicating dissipative flow of electrons. Here, we show that the measured potentials at multiple locations within a device at elevated temperature are well described by solution of Laplace's equation, assuming spatially uniform conductivity, suggesting nonequilibrium current flows through the two-dimensional bulk.
View Article and Find Full Text PDFIn this work, we combine two previously incompatible techniques for defining electronic devices: shaping three-dimensional crystals by focused ion beam (FIB), and two-dimensional electrostatic accumulation of charge carriers. The principal challenge for this integration is nanometer-scale surface damage inherent to any FIB-based fabrication. We address this by using a sacrificial protective layer to preserve a selected pristine surface.
View Article and Find Full Text PDFMonolayer hexagonal boron nitride (hBN) has attracted interest as an ultrathin tunnel barrier or environmental protection layer. Recently, wafer-scale hBN growth on Cu(111) was developed for semiconductor chip applications. For basic research and technology, understanding how hBN perturbs underlying electronically active layers is critical.
View Article and Find Full Text PDFSignificanceWhen two sheets of graphene are twisted to the magic angle of 1.1, the resulting flat moiré bands can host exotic correlated electronic states such as superconductivity and ferromagnetism. Here, we show transport properties of a twisted bilayer graphene device at 1.
View Article and Find Full Text PDFThe flat bands resulting from moiré superlattices exhibit fascinating correlated electron phenomena such as correlated insulators, ( 2018, 556 (7699), 80-84), ( 2019, 15 (3), 237) superconductivity, ( 2018, 556 (7699), 43-50), ( 2019, 572 (7768), 215-219) and orbital magnetism. ( 2019, 365 (6453), 605-608), ( 2020, 579 (7797), 56-61), ( 2020, 367 (6480), 900-903) Such magnetism has been observed only at particular integer multiples of , the density corresponding to one electron per moiré superlattice unit cell. Here, we report the experimental observation of ferromagnetism at noninteger filling (NIF) of a flat Chern band in a ABC-TLG/hBN moiré superlattice.
View Article and Find Full Text PDFSuperconductivity in SrTiO occurs at remarkably low carrier densities and therefore, unlike conventional superconductors, can be controlled by electrostatic gates. Here, we demonstrate nanoscale weak links connecting superconducting leads, all within a single material, SrTiO. Ionic liquid gating accumulates carriers in the leads, and local electrostatic gates are tuned to open the weak link.
View Article and Find Full Text PDFWe have previously reported ferromagnetism evinced by a large hysteretic anomalous Hall effect in twisted bilayer graphene (tBLG). Subsequent measurements of a quantized Hall resistance and small longitudinal resistance confirmed that this magnetic state is a Chern insulator. Here, we report that when tilting the sample in an external magnetic field, the ferromagnetism is highly anisotropic.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFRecently, quantum anomalous Hall effect with spontaneous ferromagnetism was observed in twisted bilayer graphenes (TBG) near 3/4 filling. Importantly, it was observed that an extremely small current can switch the direction of the magnetization. This offers the prospect of realizing low energy dissipation magnetic memories.
View Article and Find Full Text PDFStudies of two-dimensional electron systems in a strong magnetic field revealed the quantum Hall effect, a topological state of matter featuring a finite Chern number C and chiral edge states. Haldane later theorized that Chern insulators with integer quantum Hall effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (ABC-TLG/hBN) moiré superlattice provides an attractive platform with which to explore Chern insulators because it features nearly flat moiré minibands with a valley-dependent, electrically tunable Chern number.
View Article and Find Full Text PDFGeometric electron optics may be implemented in solids when electron transport is ballistic on the length scale of a device. Currently, this is realized mainly in 2D materials characterized by circular Fermi surfaces. Here we demonstrate that the nearly perfectly hexagonal Fermi surface of PdCoO gives rise to highly directional ballistic transport.
View Article and Find Full Text PDFWhen two sheets of graphene are stacked at a small twist angle, the resulting flat superlattice minibands are expected to strongly enhance electron-electron interactions. Here, we present evidence that near three-quarters ([Formula: see text]) filling of the conduction miniband, these enhanced interactions drive the twisted bilayer graphene into a ferromagnetic state. In a narrow density range around an apparent insulating state at [Formula: see text], we observe emergent ferromagnetic hysteresis, with a giant anomalous Hall (AH) effect as large as 10.
View Article and Find Full Text PDFUnderstanding the mechanism of high-transition-temperature (high-T) superconductivity is a central problem in condensed matter physics. It is often speculated that high-T superconductivity arises in a doped Mott insulator as described by the Hubbard model. An exact solution of the Hubbard model, however, is extremely challenging owing to the strong electron-electron correlation in Mott insulators.
View Article and Find Full Text PDF