Publications by authors named "Golam J Ahammed"

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

The occurrence of chemical effluents in different water bodies is an emerging concern. However, the effect of laboratory effluents on the canal ecosystem in Bangladesh is largely unknown. In this study, we collected 10 components of the canal ecosystem including sediments, water, fish, crabs, snails, phytoplanktons, and weeds specifically from canals that directly receive laboratory effluents.

View Article and Find Full Text PDF

Introduction: The yield and quality of tomato (Solanum lycopersicum. L) are often decreased when plants suffer from low light intensity and short-photoperiod in winter. Manipulation of the artificial light environment is a feasible technology to promote off-seasonal production and improve fruit nutritional quality in the greenhouse.

View Article and Find Full Text PDF

Melatonin plays a crucial role in regulating plant cold tolerance, but the mechanisms underlying signal transduction remain elusive. In this study, we discovered that overexpression of the melatonin biosynthetic gene caffeic acid O-methyltransferase1 (COMT1) enhanced watermelon (Citrullus lanatus) cold tolerance, accompanied by the accumulation of cytosolic free calcium ([Ca2+]cyt), a stimulation of Ca2+ influx, and upregulation of four Ca2+-permeable channel genes (CNGC2/10/17/20). Conversely, knockout of COMT1 exhibited contrasting effects compared to its overexpression.

View Article and Find Full Text PDF

Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops.

View Article and Find Full Text PDF

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (HO) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV).

View Article and Find Full Text PDF

Drought is a major handicap for plant growth and development. WRKY proteins comprise one of the largest families of plant transcription factors, playing important roles in plant growth and stress tolerance. In tomato (Solanum lycopersicum L.

View Article and Find Full Text PDF

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear.

View Article and Find Full Text PDF

Trichoderma can enhance the metabolism of organophosphate pesticides in plants, but the mechanism is unclear. Here, we performed high-throughput transcriptome sequencing of roots upon Trichoderma asperellum (TM) inoculation and phoxim (P) application in tomato (Solanum lycopersicum L.).

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal, increasingly accumulating in the environment and its presence in various environmental compartments represents a significant risk to human health via the food chain. Epigallocatechin-3-Gallate (EGCG) is a prominent secondary metabolite, which can safeguard plants from biotic and abiotic stress. However, the role of EGCG in flavonoid synthesis, nutrient acquisition and reactive oxygen species (ROS) metabolism under Cd stress remains unclear.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways.

View Article and Find Full Text PDF

Shading is an effective agronomic technique to protect tea plants from intense sunlight. However, there are currently very few studies on more effective shading methods to improve the quality of summer tea. In this study, 'Longjing43' plants were grown under four different shading treatments for 14 days, with no shading as the control.

View Article and Find Full Text PDF

Increasing photosynthesis and light capture offers possibilities for improving crop yield and provides a sustainable way to meet the increasing global demand for food. However, the poor light transmittance of transparent plastic films and shade avoidance at high planting density seriously reduce photosynthesis and alter fruit quality in vegetable crops, and therefore it is important to investigate the mechanisms of light signaling regulation of photosynthesis and metabolism in tomato (). Here, a combination of red, blue, and white (R1W1B0.

View Article and Find Full Text PDF

Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear.

View Article and Find Full Text PDF

Plants face various adverse environmental conditions, particularly with the ongoing changes in global climate, which drastically affect the growth, development and productivity of crops. To cope with these stresses, plants have evolved complex mechanisms, and one of the crucial ways is to develop transcriptional memories from stress exposure. This induced learning enables plants to better and more strongly restart the response and adaptation mechanism to stress when similar or dissimilar stresses reoccur.

View Article and Find Full Text PDF

Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species.

View Article and Find Full Text PDF

Plants respond to elevated CO (eCO) via a variety of signaling pathways that often rely on plant hormones. In particular, phytohormone salicylic acid (SA) and jasmonic acid (JA) play a key role in plant defense against diverse pathogens at eCO. eCO affects the synthesis and signaling of SA and/or JA and variations in SA and JA signaling lead to variations in plant defense responses to pathogens.

View Article and Find Full Text PDF

Cadmium (Cd) pollution is an increasingly serious problem in crop production. Although significant progress has been made to comprehend the molecular mechanism of phytochelatins (PCs)-mediated Cd detoxification, the information on the hormonal regulation of PCs is very fragmentary. In the present study, we constructed TRV-COMT, TRV-PCS, and TRV-COMT-PCS plants to further assess the function of CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and PHYTOCHELATIN SYNTHASE (PCS) in melatonin-induced regulation of plant resistance to Cd stress in tomato.

View Article and Find Full Text PDF

Chromium (Cr) is a toxic heavy metal for both animals and plants. The multifunctional signaling molecule melatonin can confer plant tolerance to heavy metal stress, but the mechanisms remain largely unknown. Here, we unveiled the critical role of the secondary metabolite anthocyanin in melatonin-induced Cr stress tolerance.

View Article and Find Full Text PDF

Chromium (Cr) is one of the toxic elements that harms all forms of life, including plants. Industrial discharges and mining largely contribute to Cr release into the soil environment. Excessive Cr pollution in arable land significantly reduces the yield and quality of important agricultural crops.

View Article and Find Full Text PDF

Cold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress.

View Article and Find Full Text PDF