Publications by authors named "Gokulakrishnan Ravicoularamin"

Metabolic labeling paired with click chemistry is a powerful approach for selectively imaging the surfaces of diverse bacteria. Herein, we explored the feasibility of labeling the lipopolysaccharide (LPS) of -a Gram-negative predatory social bacterium known to display complex outer membrane (OM) dynamics-via growth in the presence of distinct azido (-N) analogues of 3-deoxy-d--oct-2-ulosonic acid (Kdo). Determination of the LPS carbohydrate structure from strain DZ2 revealed the presence of one Kdo sugar in the core oligosaccharide, modified with phosphoethanolamine.

View Article and Find Full Text PDF

3-Deoxy-d--oct-2-ulosonic acid (Kdo) biosynthetic pathway is a promising target in antibacterial drug discovery. Herein, we report the total synthesis of 6-amino-2,6-dideoxy-α-Kdo in 15 steps from d-mannose as a potential inhibitor of Kdo-processing enzymes. Key steps of the synthetic sequence involve a Horner-Wadsworth-Emmons reaction for the two-carbon chain homologation followed by either a 6- Pd-catalyzed reductive cyclization or a tandem Staudinger/aza-Wittig reaction with concomitant α-iminoester reduction, enabling the α-stereoselective formation of the Kdo-like six-membered azacyclic ring.

View Article and Find Full Text PDF

The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated β-linked tetrasaccharide repeats.

View Article and Find Full Text PDF

Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B.

View Article and Find Full Text PDF