This paper provides a novel methodology for human-driven decision support for capacity allocation in labour-intensive manufacturing systems. In such systems (where output depends solely on human labour) it is essential that any changes aimed at improving productivity are informed by the workers' actual working practices, rather than attempting to implement strategies based on an idealised representation of a theoretical production process. This paper reports how worker position data (obtained by localisation sensors) can be used as input to process mining algorithms to generate a data-driven process model to understand how manufacturing tasks are actually performed and how this model can then be used to build a discrete event simulation to investigate the performance of capacity allocation adjustments made to the original working practice observed in the data.
View Article and Find Full Text PDF