This paper reports on plastic recovery and self-healing behavior in longitudinally-twinned and [112] orientated SiGe nanowire (NW) beams when they are subjected to large bending strains. The NW alloys are comprised of lamellar nanotwin platelet(s) sandwiched between two semi-cylindrical twins. The loading curves, which are acquired from atomic force microscope (AFM) based three-point bending tests, reveal the onset of plastic deformation at a characteristic stress threshold, followed by further straining of the NWs.
View Article and Find Full Text PDFAtomic force microscopy (AFM) based nanomechanics experiments involving polytypic todorokite-like manganese dioxide nanobelts reveal varied nanomechanical performance regimes such as brittle fracture, near-brittle fracture, and plastic recovery within the same material system. These nanobelts are synthesized through a layer-to-tunnel material transformation pathway and contain one-dimensional tunnels, which run along their longitudinal axis and are enveloped by × 3 MnO octahedral units along their walls. Depending on the extent of material transformation towards a tunneled microstructure, the nanobelts exhibit stacking disorders or polytypism where the value for ranges from 3 to up to ∼20 within different cross-sectional regions of the same nanobelt.
View Article and Find Full Text PDF