Publications by authors named "Goksel N Demirer"

Two-phase anaerobic digestion (AD) performance is significantly influenced by operating parameters such as temperature and solids retention time (SRT), while their impact on antibiotic resistance genes (ARGs) during the acidogenic (AP) and methanogenic (MP) phases remains unclear. This study assessed the abundance of eight ARGs in full-scale two-phase AD, then operated lab-scale two-phase AD systems to evaluate temperature combinations (thermophilic-thermophilic, thermophilic-mesophilic, mesophilic-thermophilic, and mesophilic-mesophilic) at a constant SRT (AP = 2/MP = 13d) and to further assess different SRTs (AP = 2/MP = 13d and AP = 4/MP = 11d). qPCR results revealed that full-scale two-phase AD reduced total ARGs abundance by 87.

View Article and Find Full Text PDF

Microplastic pollution has emerged as a global environmental concern, with pervasive contamination in terrestrial and aquatic ecosystems. This review paper delves into the intricate dynamics of microplastics within anaerobic digestion systems, addressing their occurrence, impact, and potential mitigation strategies. The occurrence of microplastics in anaerobic digesters is widespread, entering these systems through diverse inputs, such as sewage sludge, organic waste, and etc.

View Article and Find Full Text PDF
Article Synopsis
  • * Eight common ARGs and three MGEs were analyzed, revealing that both AD and ST effectively reduce the abundance of these genes, with ST showing the highest removal efficiency.
  • * The research findings indicate a significant decrease in intracellular and EPS-associated ARGs after AD, but an increase in cell-free ARGs, highlighting concerns about the spread of these resistant genes in the environment.
View Article and Find Full Text PDF

This study investigated the effect of ultrasonic (US) pretreatment at three different contact times (30, 45, and 60 min) with a power of 240 W and frequency of 40 kHz on the fate of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and enteric pathogens during anaerobic digestion (AD) of sludge. By using real time-qPCR, three MGEs (int1, int2, and tnpA) and seven ARGs (sul1, sul2, tetW, tetA, tetO, ermF, and aac(6')-lb) were quantified that have serious human health impacts and represent the most widely used antibiotics (tetracycline, sulfonamide, macrolide, and aminoglycoside). Results indicated that US pretreatment under different contact times improved the removal of ARGs and MGEs.

View Article and Find Full Text PDF

The use of carbon-based conductive materials has been shown to lead to an increase in biogas and methane yields during anaerobic digestion (AD). The effect of these additives on AD using synthetic substrates has been extensively studied, yet their significance for wastewater sludge digestion has not been adequately investigated. Therefore, the aim of this research was to optimize the concentration of petroleum coke (PC) that is a waste by-product of oil refineries, for the anaerobic digestion of wastewater sludge and investigation of phosphate removal in the AD process in the mesophilic temperature range.

View Article and Find Full Text PDF

The effluent stream of the anaerobic digestion processes, the digestate, accommodates high residual organic content that needs to be further treated before discharge. Anaerobic treatment of digestate would not only reduce the residual organic compounds in digestate but also has a potential to capture the associated biogas. High-rate anaerobic reactor configurations can treat the waste streams using lower hydraulic retention times which requires less footprint opposed to the conventional completely stirred tank reactors.

View Article and Find Full Text PDF

Short chain volatile fatty acids (VFAs) from acetic acid (C2) to valeric acid (C5) are important starting chemicals for chemical industry. The production of VFAs from rejected resources (organic residues) using self-sustaining technologies has an exciting potential in supporting the US chemical industry to achieve the goal that 20% of chemicals produced in the USA will be bio-based. Acidogenic anaerobic digestion as a robust, well-established, and versatile biological technology can be applied as an alternative approach for the valorization of organic residues (municipal, agricultural, and industrial wastes) by the production of VFAs.

View Article and Find Full Text PDF

Although anaerobic digestion is a well-established technology, the treatment and disposal of the digestate still presents a challenge due to lack of viable methods for processing. The residual organic matter in digestates also creates a significant residual biogas potential. This fact indicates that the digestates need further processing not only to reduce their organic content for disposal, but also to capture the biogas associated with this residual organic content.

View Article and Find Full Text PDF

This study comparatively evaluated the effect of co-substrates on anaerobic digestion (AD) and biochemical methane potential of wastewater-derived microalgal biomass, with an emphasis on carbon-to-nitrogen (C:N) and substrate-to-inoculum (S:I) ratios. A semi-continuous photobioreactor was inoculated with Chlorella vulgaris and the nutrient recovery potential was investigated. Derived microalgal slurry was subjected to AD in the absence and presence of co-substrates; model kitchen waste (MKW) and waste activated sludge (WAS).

View Article and Find Full Text PDF

The objective of this study was to investigate the climate change adaptation opportunities of six companies from different sectors through resource efficiency and sustainable production. A total of 77 sustainable production options were developed for the companies based on the audits conducted. After screening these opportunities with each company's staff, 19 options were selected and implemented.

View Article and Find Full Text PDF

Anaerobic digestion is commonly used for the stabilization of agricultural and animal wastes. However, owing to the stringent environmental criteria, anaerobic digester effluents need to be further treated to reduce nutrient loads to the receiving water bodies. Struvite precipitation is one of the promising techniques applied for this purpose.

View Article and Find Full Text PDF

Is it possible to create conditions in the anaerobic digesters to control nutrients without changing the performance of a reactor? This study investigates an answer for this question. To this purpose, anaerobic reactors are operated at high concentrations of Mg(2+) ion to harvest the nutrient ions (NH4 (+) and PO4 (3-)) in the form of struvite, that is, magnesium ammonium phosphate. The effects of this modification on the anaerobic digestion of sewage sludge were investigated in terms of chemical oxygen demand (COD) removal and cumulative CH4 production as well as the changes in the biological diversity.

View Article and Find Full Text PDF

The aim of this study was to compare a batch-fed continuously mixed anaerobic reactor (FCMR) with an anaerobic sequencing batch reactor (ASBR), in terms of waste stabilization and methane production treating sugar-beet processing wastewater and beet-pulp simultaneously. A reactor was operated as FCMR, which then was operated as an ASBR by changing operational conditions after the steady-state was reached. Although the hydraulic retention time value of the ASBR configuration was lower (8 days) than that of the FCMR (15 days) and the corresponding organic loading rate (OLR) was higher (0.

View Article and Find Full Text PDF

The formation of struvite (MgNH(4)PO(4).6H(2)O) in wastewater treatment plants can lead to scaling and thus operational problems reducing the treatment efficiency. However, struvite has significant commercial value as an agricultural fertilizer.

View Article and Find Full Text PDF

The bio-hydrogen generation potential of sugar industry wastes was investigated. In the first part of the study, acidogenic anaerobic culture was enriched from the mixed anaerobic culture (MAC) through acidification of glucose. In the second part of the study, glucose acclimated acidogenic seed was used, along with the indigenous microorganisms, MAC, 2-bromoethanesulfonate treated MAC and heat treated MAC.

View Article and Find Full Text PDF

In this study, anaerobic acidification of sugar beet processing wastes and subsequent liquid-liquid extraction of produced fermentation metabolites were investigated. The aim of extraction experiments was to asses the influence of pH and extractant (trioctylphosphine oxide (TOPO) in kerosene) concentrations on the recovery of volatile fatty acids (VFAs) from fermentation broth. The effect of TOPO in kerosene concentration was as crucial as the effect of pH on the recovery of VFAs via extraction.

View Article and Find Full Text PDF

Research was conducted at Middle East Technical University (METU), Ankara, Turkey in 2000 to determine whether a reed bed filled with an economical Turkish fill media that has high phosphorus (P) sorption capacity, could be implemented and operated successfully under field conditions. In batch-scale P-sorption experiments, the P-sorption capacity of the blast furnace granulated slag (BFGS) of KARDEMIR Iron and Steel Ltd., Co.

View Article and Find Full Text PDF

In this study, anaerobic treatability and biogas generation potential of broiler and cattle manure were investigated. For this purpose, seven sets of anaerobic batch reactor experiments were performed using broiler and cattle manure and their mixtures in five different ratios (100% broiler; 75% broiler, 25% cattle; 50% broiler, 50% cattle; 25% broiler, 75% cattle; 100% cattle). These manure mixtures had two different initial chemical oxygen demand (COD) (12,000 and 53,500 mg/l) concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the effects of dieldrin (DLD) on anaerobic reactors, finding that high concentrations (30 mg/l) were toxic to unacclimated cultures.
  • In a two-stage upflow anaerobic sludge blanket (UASB) reactor system using ethanol, cultures were able to acclimate to DLD, achieving chemical oxygen demand (COD) removal rates of 88-92%.
  • The research highlighted that biosorption onto granular anaerobic biomass significantly contributed to DLD removal, with a maximum loading rate of 0.5 mg/l/day achieved in the first stage of the UASB system.
View Article and Find Full Text PDF