Publications by authors named "Goicoechea S"

Invadopodia formation is regulated by Rho GTPases. However, the molecular mechanisms that control Rho GTPase signaling at invadopodia remain poorly understood. Here, we have identified ARHGAP17, a Cdc42-specific RhoGAP, as a key regulator of invadopodia in breast cancer cells and characterized a novel ARHGAP17-mediated signaling pathway that controls the spatiotemporal activity of Cdc42 during invadopodia turnover.

View Article and Find Full Text PDF

Ruffles are actin-rich membrane protrusions implicated in actin reorganization and initiation of cell motility. Here, we describe methods for measuring and analyzing ruffle dynamics in live cells and average ruffle area per cell in fixed samples. The specific steps described are for the analysis of A549 lung adenocarcinoma cells, but the protocol can be applied to other cell types.

View Article and Find Full Text PDF

Leishmaniasis remains a serious public health problem in many tropical regions of the world. Among neglected tropical diseases, the mortality rate of leishmaniasis is second only to malaria. All currently approved therapeutics have toxic side effects and face rapidly increasing resistance.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates whether gender affects postoperative complications after carotid endarterectomy (CEA) and carotid artery stenting (CAS) using data from the American College of Surgeons National Surgical Quality Improvement Program.
  • It compares outcomes between male and female patients, finding that female patients experience significantly higher rates of complications like stroke and readmissions, especially in asymptomatic and symptomatic cohorts.
  • The research highlights the need for more focused studies on gender differences in CAS, as the existing literature primarily addresses CEA outcomes.
View Article and Find Full Text PDF

Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation.

View Article and Find Full Text PDF

Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium.

View Article and Find Full Text PDF

Influenza A and B viruses cause seasonal worldwide influenza epidemics each winter, and are a major public health concern and cause of morbidity and mortality. A substantial reduction in influenza-related deaths can be attributed to both vaccination and administration of oseltamivir (OS), which is approved for oral administration and inhibits viral neuraminidase (NA), a transmembrane protein. OS carboxylate (OSC), the active form of OS, is formed by the action of endogenous esterase, which targets NA and is shown to significantly reduce influenza-related deaths.

View Article and Find Full Text PDF

Background: Since their introduction in the virtual screening field, Receiver Operating Characteristic (ROC) curve-derived metrics have been widely used for benchmarking of computational methods and algorithms intended for virtual screening applications. Whereas in classification problems, the ratio between sensitivity and specificity for a given score value is very informative, a practical concern in virtual screening campaigns is to predict the actual probability that a predicted hit will prove truly active when submitted to experimental testing (in other words, the Positive Predictive Value - PPV). Estimation of such probability is however, obstructed due to its dependency on the yield of actives of the screened library, which cannot be known a priori.

View Article and Find Full Text PDF

Despite the approval of a considerable number of last generation antiepileptic drugs (AEDs) (only in the last decade, six drugs have gained Food and Drug Administration approval), the global figures of seizure control have seemingly not improved, and available AED can still be regarded as symptomatic treatments. Fresh thinking in AEDs drug discovery, including the development of drugs with novel mechanisms of action, is required to achieve truly innovative antiepileptic medications. The transporter hypothesis proposes that inadequate penetration of AEDs across the blood-brain barrier, caused by increased expression of efflux transporters such as P-glycoprotein (P-gp), contributes to drug-resistant epilepsy.

View Article and Find Full Text PDF
Article Synopsis
  • The Scribble polarity complex is important for regulating epithelial junctions and apical polarity, with SGEF, a RhoG-specific GEF, forming a ternary complex with Scribble and Dlg1.
  • SGEF is crucial for actomyosin contractility and barrier function at tight junctions, and it helps in the formation of adherens junctions, although it does not establish polarity.
  • In 3D cysts, SGEF influences the formation of a single open lumen and its nucleotide exchange activity is vital for maintaining junctions, while its scaffolding ability regulates contractility and lumen opening.
View Article and Find Full Text PDF

Focal adhesions (FA) are a complex network of proteins that allow the cell to form physical contacts with the extracellular matrix (ECM). FA assemble and disassemble in a dynamic process, orchestrated by a variety of cellular components. However, the underlying mechanisms that regulate adhesion turnover remain poorly understood.

View Article and Find Full Text PDF

The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore.

View Article and Find Full Text PDF

Circular dorsal ruffles (CDRs) are actin-rich structures that form on the dorsal surface of many mammalian cells in response to growth factor stimulation. CDRs represent a unique type of structure that forms transiently and only once upon stimulation. The formation of CDRs involves a drastic rearrangement of the cytoskeleton, which is regulated by the Rho family of GTPases.

View Article and Find Full Text PDF

One of the hallmarks of cancer is the ability of tumor cells to invade surrounding tissues and metastasize. During metastasis, cancer cells degrade the extracellular matrix, which acts as a physical barrier, by developing specialized actin-rich membrane protrusion structures called invadopodia. The formation of invadopodia is regulated by Rho GTPases, a family of proteins that regulates the actin cytoskeleton.

View Article and Find Full Text PDF

Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling.

View Article and Find Full Text PDF

About 30% of the patients with epilepsy do not respond to clinically established anticonvulsants, despite having effective concentrations of the antiepileptic drug in plasma. Therefore, new preclinical models of epilepsy are needed to identify more efficacious treatments. We describe here a new drug-resistant seizure model in mice to be used at the early stages of pre-clinical trials.

View Article and Find Full Text PDF

Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker.

View Article and Find Full Text PDF

We report herein the design and optimization of a novel series of sulfamides and sulfamates derived from amino esters with anticonvulsant properties. The structures were designed based on the pharmacophoric pattern previously proposed, with the aim of improving the anticonvulsant action. The compounds were obtained by a new synthetic procedure with microwave assisted heating and the use of adsorbents in the isolation process.

View Article and Find Full Text PDF

The stroma surrounding solid tumors contributes in complex ways to tumor progression. Cancer-associated fibroblasts (CAFs) are the predominant cell type in the tumor stroma. Previous studies have shown that the actin-binding protein palladin is highly expressed in the stroma of pancreas tumors, but the interpretation of these results is complicated by the fact that palladin exists as multiple isoforms.

View Article and Find Full Text PDF

Cell migration is a highly regulated multistep process that requires the coordinated regulation of cell adhesion, protrusion, and contraction. These processes require numerous protein-protein interactions and the activation of specific signaling pathways. The Rho family of GTPases plays a key role in virtually every aspect of the cell migration cycle.

View Article and Find Full Text PDF

Here, we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously, we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct filamentous actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and cross-linking.

View Article and Find Full Text PDF

The stromal compartment surrounding epithelial-derived pancreatic tumors is thought to have a key role in the aggressive phenotype of this malignancy. Emerging evidence suggests that cancer-associated fibroblasts (CAFs), the most abundant cells in the stroma of pancreatic tumors, contribute to the tumor's invasion, metastasis and resistance to therapy, but the precise molecular mechanisms that regulate CAFs behavior are poorly understood. In this study, we utilized immortalized human pancreatic CAFs to investigate molecular pathways that control the matrix-remodeling and invasion-promoting activity of CAFs.

View Article and Find Full Text PDF

Palladin, an actin associated protein, plays a significant role in regulating cell adhesion and cell motility. Palladin is important for development, as knockdown in mice is embryonic lethal, yet its role in the development of the vasculature is unknown. We have shown that palladin is essential for the expression of smooth muscle cells (SMC) marker genes and force development in response to agonist stimulation in palladin deficient SMCs.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with a characteristic pattern of early metastasis, which is driving a search for biomarkers that can be used to detect the cancer at an early stage. Recently, the actin-associated protein palladin was identified as a candidate biomarker when it was shown that palladin is mutated in a rare inherited form of PDA, and overexpressed in many sporadic pancreas tumors and premalignant precursors. In this study, we analyzed the expression of palladin isoforms in murine and human PDA and explored palladin's potential use in diagnosing PDA.

View Article and Find Full Text PDF

Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin.

View Article and Find Full Text PDF