Publications by authors named "Goh Lin Tang"

Translocation of a nascent protein from the cytosol into the ER mediated by its signal peptide is a critical step in protein secretion. The aim of this work was to develop a platform technology to optimize the signal peptides for high level production of therapeutic antibodies in CHO cells. A database of signal peptides from a large number of human immunoglobulin (Ig) heavy chain (HC) and kappa light chain (LC) was generated.

View Article and Find Full Text PDF

Conventional microbiological assays have been a valuable tool for specific enumeration of indicative bacteria of relevance to food and public health, but these culture-based methods are time-consuming and require tedious biochemical and morphological identification. In this work, we exploit the ability of bacteriophage T7 to specifically infect Escherichia coli and amplify nearly a 100-fold in 1–2 h. Bacteriophage amplification is integrated with liquid chromatography-multiple reaction monitoring tandem mass spectrometry (LC-MRM–MS/MS) for quantitation of phage-specific peptides.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cell lines are widely used for the expression of therapeutic recombinant proteins, including monoclonal antibodies and other biologics. For manufacturing, cells derived from a single-cell clone are typically used to ensure product consistency. Presently, fetal bovine serum (FBS) is commonly used to support low cell density cultures to obtain clonal cell populations because cells grow slowly, or even do not survive at low cell densities in protein-free media.

View Article and Find Full Text PDF

Four versions of tricistronic vectors expressing IgG1 light chain (LC), IgG1 heavy chain (HC), and dihydrofolate reductase (DHFR) in one transcript were designed to compare internal ribosome entry site (IRES) and furin-2A (F2A) for their influence on monoclonal antibody (mAb) expression level and quality in CHO DG44 cells. LC and HC genes are arranged as either the first or the second cistron. When using mAb quantification methods based on the detection antibodies against HC Fc region, F2A-mediated tricistronic vectors appeared to express mAb at higher levels than the IRES-mediated tricistronic vectors in both transient and stable transfections.

View Article and Find Full Text PDF

Dectin-1 (CLEC7A) is a C-type lectin receptor that binds to β-glucans found in fungal cell walls to act as a major pattern recognition receptor (PRR). Since β-glucans epitope is not present in human cells, we are of the opinion that Dectin-1 can have therapeutic functions against fungal infections. We thus set out to produce a soluble extracellular domain of murine Dectin-1 (called sDectin-1) in sufficient titers to facilitate such studies in mouse models.

View Article and Find Full Text PDF

A metabolomics-based approach was used to time profile extracellular metabolites in duplicate fed-batch bioreactor cultures of recombinant Chinese Hamster Ovary (CHO) cells producing monoclonal IgG antibody. Culture medium was collected and analysed using a high-performance liquid chromatography (HPLC) system in tandem with an LTQ-Orbitrap mass spectrometer. An in-house software was developed to pre-process the LC/MS data in terms of filtering and peak detection.

View Article and Find Full Text PDF

The use of hybrid quadrupole ion mobility spectrometry time-of-flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (T(d)) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent-excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI-X, MI-Y and MI-Z), inverse mobility and collision cross-section (CCS). The correlation of T(d) with these parameters is presented and discussed.

View Article and Find Full Text PDF

N-methylisoindigotin, abbreviated as meisoindigo, has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia in China since the 1980s. However, information relevant to in vitro metabolism of meisoindigo is limited. In this study, in vitro stereoisomeric metabolites of meisoindigo in rat liver microsomes were identified for the first time by achiral and chiral liquid chromatography/tandem mass spectrometry, together with proton NMR spectroscopy and synchrotron infrared spectroscopy.

View Article and Find Full Text PDF

The maintenance of undifferentiated human embryonic stem cells (hESC) requires feeder cells, either in co-culture or feeder-free with conditioned medium (CM) from the feeders. In this study, we compared the CM of a supporting primary mouse embryonic feeder (MEF) and an isogenic but non-supporting MEF line (DeltaE-MEF) in order to gain an insight to the differential expression profile of secreted factors. Using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight (MALDI) tandem mass spectrometry, 13 protein identities were found to be downregulated in DeltaE-MEF compared to MEF, of which 4 were found to be soluble factors and 3 proteins were membrane-associated or related to the extracellular matrix.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosylation significantly influences the quality of recombinant proteins from mammalian cells, relying on a limited set of enzymes and nucleotide sugars to create a complex network of N-glycan biosynthesis.
  • GlycoVis is a newly developed visualization program that maps glycan distribution and synthesis pathways, helping researchers visualize the relationships and abundances of various N-glycans.
  • The program’s utility is demonstrated through analysis of glycoform distributions in Chinese Hamster Ovary cell-derived tissue plasminogen activator and human/mouse IgG, aiding in understanding metabolic engineering opportunities under varying conditions.
View Article and Find Full Text PDF

Monoclonal antibody therapeutics is an important and fast expanding market. While production of these molecules has been a major area of research, much less is known regarding the stabilization of these proteins for delivery as drugs. Crystallization of antibodies is one such promising route for protein stabilization at high titers, and here we took a systematic approach to initiate crystallization through nucleation in a simple PEG (polyethylene glycol), protein in water solution.

View Article and Find Full Text PDF

An important challenge facing therapeutic protein production in mammalian cell culture is the cleavage of terminal sialic acids on recombinant protein glycans by the glycosidase enzymes released by lysed cells into the supernatant. This undesired phenomenon results in a protein product which is rapidly cleared from the plasma by asialoglycoprotein receptors in the liver. In this study, RNA interference was utilized as a genetic approach to silence the activity of sialidase, a glycosidase responsible for cleaving terminal sialic acids on IFN-gamma produced by Chinese Hamster Ovary (CHO) cells.

View Article and Find Full Text PDF

A robust tandem HPLC method coupling size-exclusion (Shodex Asahipak GS-320HQ) and reversed phase (Vydac 218TP54) columns with ultraviolet detection was developed for quantitative determination of interferon-gamma (IFN-gamma) in Chinese hamster ovary cell culture supernatant. The 2D-HPLC system was linked up by a 6-port 2-position low hold-up volume switch valve. Compared to a commercial ELISA kit for IFN-gamma, the coupled column LC approach was able to detect and quantify soluble IFN-gamma, regardless of the glycoprotein's molecular/conformational variability and sample background.

View Article and Find Full Text PDF