Recently developed terahertz (THz) two-dimensional coherent spectroscopy (2DCS) is a powerful technique to obtain materials information in a fashion qualitatively different from other spectroscopies. Here, we utilized THz 2DCS to investigate the THz nonlinear response of conventional superconductor NbN. Using broadband THz pulses as light sources, we observed a third-order nonlinear signal whose spectral components are peaked at twice the superconducting gap energy 2Δ.
View Article and Find Full Text PDFRecent experiments with strong THz fields in unconventional cuprate superconductors have clearly evidenced an increase of the non-linear optical response below the superconducting critical temperature . As in the case of conventional superconductors, a theoretical estimate of the various effects contributing to the non-linear response is needed in order to interpret the experimental findings. Here, we report a detailed quantitative analysis of the non-linear THz optical kernel in cuprates within a realistic model, accounting for the band structure and disorder level appropriate for these systems.
View Article and Find Full Text PDF