Familial platelet disorder (FPD) is associated with germline mutations, establishing a preleukemic state and increasing the risk of developing leukemia. Currently, there are no intervention strategies to prevent leukemia progression. Single-cell RNA sequencing ( = 10) combined with functional analysis of samples from patients with -FPD ( > 75) revealed that FPD hematopoietic stem and progenitor cells (HSPCs) displayed increased myeloid differentiation and suppressed megakaryopoiesis because of increased activation of prosurvival and inflammatory pathways.
View Article and Find Full Text PDFDeleterious germline variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs). The role of DDX41 in hematopoiesis and how its germline and somatic mutations contribute to MNs remain unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for the development of other hematopoietic lineages.
View Article and Find Full Text PDFIntroduction: Defining the chromosomal and molecular changes associated with myeloid neoplasms (MNs) optimizes clinical care through improved diagnosis, prognosis, treatment planning, and patient monitoring. This review will concisely describe the techniques used to profile MNs clinically today, with descriptions of challenges and emerging approaches that may soon become standard-of-care.
Areas Covered: In this review, the authors discuss molecular assessment of MNs using non-sequencing techniques, including conventional cytogenetic analysis, fluorescence in situ hybridization, chromosomal genomic microarray testing; as well as DNA- or RNA-based next-generation sequencing (NGS) assays; and sequential monitoring via digital PCR or measurable residual disease assays.
Historically, the increased incidence of myeloid neoplasms observed in individuals with breast and ovarian cancer has been attributed exclusively to prior exposure to cancer-directed therapies. However, as the association between deleterious germline variants and the development of hematopoietic malignancies (HMs) becomes better established, we propose the increased incidence of myeloid neoplasms in those with breast and ovarian cancer may be at least partially related to underlying germline cancer predisposition alleles. Deleterious germline variants in BRCA1/2, ATM, CHEK2, PALB2, and other related genes prevent normal homologous recombination DNA repair of double-strand breaks, leading to reliance on less effective repair mechanisms.
View Article and Find Full Text PDFAm Soc Clin Oncol Educ Book
June 2024
Although numerous barriers for clinical germline cancer predisposition testing exist, the increasing recognition of deleterious germline DNA variants contributing to myeloid malignancy risk is yielding steady improvements in referrals for testing and testing availability. Many germline predisposition alleles are common in populations, and the increasing number of recognized disorders makes inherited myeloid malignancy risk an entity worthy of consideration for all patients regardless of age at diagnosis. Germline testing is facilitated by obtaining DNA from cultured skin fibroblasts or hair bulbs, and cascade testing is easily performed via buccal swab, saliva, or blood.
View Article and Find Full Text PDFIntroduction: The global pandemic prompted changes in health science education affecting both teaching and learning. This multi-institutional study assesses the near-term implications of these changes on faculty and faculty development. The project goals were to: (1) describe faculty experiences of teaching during the pandemic; (2) identify ways to sustain new pedagogical approaches, (3) describe the types of support faculty members need, and (4) offer recommendations to enhance oral health professions education.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
March 2024
Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.
View Article and Find Full Text PDFGenetic predisposition to hematologic malignancies has historically been addressed utilizing patients recruited from clinical trials and pedigrees constructed at major treatment centers. Such efforts leave unexplored the genetic basis of variations in risk by race/ethnic group shown in population-based surveillance data where cancer registration, compulsory by law, delivers universal enrollment. To address this, we performed exome sequencing on DNA isolated from newborn bloodspots derived from sibling pairs with early-onset cancers across California in which at least one of the siblings developed a hematologic cancer, using unbiased recruitment from the full state population.
View Article and Find Full Text PDFPurpose: To identify likely germline DNA variants from sequential tumor profiling data from hematopoietic malignancies (HMs).
Methods: The coefficient of variance was calculated from variant allele frequency of next-generation sequencing assays. Variants' likelihood of being germline was ranked on a 1 to 5 scale.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a key treatment option for hematologic malignancies (HMs), although it carries significant risks. Up to 30% of patients relapse after allo-HSCT, of which up to 2% to 5% are donor-derived malignancies (DDMs). DDMs can arise from a germline genetic predisposition allele or clonal hematopoiesis (CH) in the donor.
View Article and Find Full Text PDFThe recent application of whole exome or whole genome sequencing unveiled a plethora of germline variants predisposing to myeloid disorders, particularly myelodysplastic neoplasms. The presence of such variants in patients with myelodysplastic syndromes has important clinical repercussions for haematopoietic stem-cell transplantation, from donor selection and conditioning regimen to graft-versus-host disease prophylaxis and genetic counselling for relatives. No international guidelines exist to harmonise management approaches to this particular clinical scenario.
View Article and Find Full Text PDFWe now recognize that with aging, hematopoietic stem and progenitor cells (HSPCs) acquire mutations that confer a fitness advantage and clonally expand in a process now termed clonal hematopoiesis (CH). Because CH predisposes to a variety of health problems, including cancers, cardiovascular diseases, and inflammatory conditions, there is intense interest in the inherited alleles associated with the development of CH. DNA variants near TERT, SMC4, KPNA4, IL12A, CD164, and ATM confer the strongest associations.
View Article and Find Full Text PDF