Research has shown that people consume more food when offered larger portions, and that reducing exposure to large food portions and packages could decrease the average daily energy consumed. In this context, our aim is to develop strategies to promote healthier eating behaviors by reducing portion selection and intake. The present research investigates the impact of different visual attributes of foods on quantity perception and portion selection.
View Article and Find Full Text PDFIt is critical to develop ecologically valid experimental methods to assess consumers' food-related behaviors. Ad libitum approaches are often used but may not be appropriate for studies with children or with products that are not typically consumed until the individual feels full. The current study presents novel methods to assess children's size perception and portion preference for gummy candies.
View Article and Find Full Text PDFIncreasing portion sizes over the last 30 years are considered to be one of the factors underlying overconsumption. Past research on the drivers of portion selection for foods showed that larger portions are selected for foods delivering low expected satiation. However, the respective contribution of expected satiation vs.
View Article and Find Full Text PDFLaboratory studies have demonstrated that experimental manipulations of oral processing can have a marked effect on energy intake. Here, we explored whether variations in oral processing across a range of unmodified everyday meals could affect post-meal fullness and meal size. In Study 1, female participants (N = 12) attended the laboratory over 20 lunchtime sessions to consume a 400-kcal portion of a different commercially available pre-packaged meal.
View Article and Find Full Text PDFDeliberately eating at a slower pace promotes satiation and eating quickly has been associated with a higher body mass index. Therefore, understanding factors that affect eating rate should be given high priority. Eating rate is affected by the physical/textural properties of a food, by motivational state, and by portion size and palatability.
View Article and Find Full Text PDFEating slowly is associated with a lower body mass index. However, the underlying mechanism is poorly understood. Here, our objective was to determine whether eating a meal at a slow rate improves episodic memory for the meal and promotes satiety.
View Article and Find Full Text PDFThere is mounting evidence that, in addition to texture and olfaction, taste plays a role in the detection of long chain fatty acids. Triglycerides, the main components of oils and dietary fat, are hydrolyzed in the mouth by a lingual lipase secreted from the von Ebner gland and the released free fatty acids are detected by the taste system. GPR40 and GPR120, two fatty acid responsive G-protein-coupled receptors (GPCRs), are expressed in taste bud cells, and knockout mice lacking either of those receptors have blunted taste nerve responses to and reduced preference for fatty acids.
View Article and Find Full Text PDFNatural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies.
View Article and Find Full Text PDFThe oral perception of fat has traditionally been considered to rely mainly on texture and olfaction, but recent findings suggest that taste may also play a role in the detection of long chain fatty acids. The two G-protein coupled receptors GPR40 (Ffar1) and GPR120 are activated by medium and long chain fatty acids. Here we show that GPR120 and GPR40 are expressed in the taste buds, mainly in type II and type I cells, respectively.
View Article and Find Full Text PDFTemporal release and retention of aroma compounds from structured emulsions (where unsaturated monoglycerides are added to the oil) and conventional oil-in-water emulsions were studied using in vitro dynamic headspace analysis by proton-transfer reaction mass spectrometry and static headspace analysis by gas chromatography-mass spectrometry. Under dynamic conditions, the structured emulsion exhibited delayed release compared to the oil-in-water emulsion containing the same lipid content of 5%. The time to maximum concentration T max of amphiphilic and lipophilic aroma compounds increased by a factor of 1.
View Article and Find Full Text PDFLipids between the tongue and palate strongly contribute to the sensory impact of a product. Mouthfeel is a sensory attribute responsible for distinguishing reduced fat from full fat food products. The aim of this work was to quantify the distribution, deposition, and retention of lipids on the tongue and palate upon oral processing and relate this to texture.
View Article and Find Full Text PDFSeveral of the ATP-binding cassette (ABC) transporters confer resistance to anticancer agents and/or antiviral agents when overexpressed in drug-sensitive cells. Recently a MRP1 (ABCC1) tricyclic isoxazole inhibitor, LY475776 was shown to be a glutathione-dependent photoaffinity label of human MRP1 and showed poor labeling of murine mrp1, an ortholog that does not confer anthracycline resistance. In the present study, the specificity of LY475776 was examined for its ability to modulate or photolabel orthologs of MRP1 and several other drug efflux transporters of the ABC transporter family.
View Article and Find Full Text PDFThe multidrug resistance-associated protein 1 (ABCC1) gene from human (hMRP1), dog (canMRP1), and mouse (muMRP1) all encode proteins that efficiently transport the endogenous MRP1 substrate glutathione-S-leukotriene C(4) and confer resistance to anticancer agents, including vincristine and etoposide. hMRP1 also confers resistance to anthracyclines, whereas this is not true of canMRP1 or muMRP1. To determine whether MRP1 from another animal species used in toxicological studies would be more functionally similar to hMRP1, we cloned and characterized two alleles of the MRP1 homologue from the cynomolgus monkey Macaca fascicularis (monMRP1).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1996
We have cloned and expressed a Ca(2+)-activated K+ channel beta-subunit from human brain. The open reading frame encodes a 191-amino acid protein possessing significant homology to a previously described subunit cloned from bovine muscle. The gene for this subunit is located on chromosome 5 at band q34 (hslo-beta).
View Article and Find Full Text PDF1. Benign prostatic hyperplasia (BPH) causes urinary obstruction in aging men that frequently requires surgery to relieve the symptoms of urinary retention, nocturia, and micturition. Smooth muscle tone which contributes to the urethral constriction in the enlarged gland appears to be mediated by the alpha 1-adrenoceptors.
View Article and Find Full Text PDFWe have cloned and expressed nine Ca(2+)-activated K+ channel isoforms from human brain. The open reading frames encode proteins ranging from 1154 to 1195 amino acids, and all possess significant identity with the slowpoke gene products in Drosophila and mouse. All isoforms are generated by alternative RNA splicing of a single gene on chromosome 10 at band q22.
View Article and Find Full Text PDFWe report the molecular cloning of a cDNA encoding a high affinity human glycine transporter. An open reading frame of 1914 nucleotides encodes a 638-amino acid protein that transports glycine in a Na+/Cl(-)-dependent manner. In common with other Na+/Cl(-)-dependent transporters, it possesses 12 putative transmembrane domains, according to its hydropathicity profile.
View Article and Find Full Text PDFOpossum kidney cells are an established epithelial cell line which is often studied as a physiological model system of renal proximal tubule function, and which has also been shown to possess dopamine receptors. To identify dopamine receptor subtypes present in renal tissue, as well as to explore the usefulness of opossum kidney cells for the study of D1 dopamine receptors and renal dopaminergic physiology, we have undertaken the cloning and characterization of the dopamine receptor expressed in this cell line. In the brains of rats and humans, two different subtypes of D1 dopamine receptors, D1A and D1B, have recently been characterized.
View Article and Find Full Text PDFWe have screened a human substantia nigra cDNA library with probes derived from the rat dopamine transporter. A 3.5-kilobase cDNA clone was isolated and its corresponding gene was located on the distal end of chromosome 5 (5p15.
View Article and Find Full Text PDFMultiple D1 dopaminergic receptor subtypes have been postulated on the basis of pharmacological, biochemical, and genetic studies. We describe the isolation and characterization of a rat gene encoding a dopamine receptor that is structurally and functionally similar to the D1 dopamine receptor. The coding region, which is intronless, encodes a protein of 475 amino acids (Mr 52,834) with structural features that are consistent with receptors coupled to guanine nucleotide-binding regulatory proteins.
View Article and Find Full Text PDF