Publications by authors named "Godin C"

DNA transformation is key for phenotypic diversity and adaptation of Streptococcus pneumoniae including in the emergence of multidrug resistance (MDR). Under laboratory conditions, DNA transformation is facilitated by the artificial triggering of competence by the competence stimulating peptide (CSP). In ongoing DNA transformation work, we observed that exogenous CSP was dispensable depending on the combination of strains and culture media.

View Article and Find Full Text PDF

Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis.

View Article and Find Full Text PDF

In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana.

View Article and Find Full Text PDF

Unlabelled: Antimicrobial resistance (AMR) is a public health threat worldwide. Next-generation sequencing (NGS) has opened unprecedented opportunities to accelerate AMR mechanism discovery and diagnostics. Here, we present an integrative approach to investigate trimethoprim (TMP) resistance in the key pathogen .

View Article and Find Full Text PDF

Background/aim: How tumors regulate the genes of the coagulome is crucial for cancer-associated thrombosis and the occurrence of venous thromboembolic complications in patients with cancer. We have previously reported potent yet complex effects of glucocorticoids (GC) on the expression of three genes that play a key role in the regulation of thrombin/plasmin activation (F3, PLAU, and SERPINE1). This study aimed to extend the investigation of GC effects to the whole tumor coagulome and assess the resulting impact on the ability of cancer cells to activate thrombin and plasmin.

View Article and Find Full Text PDF

Two strains of Streptococcus pneumoniae, one expressing the methyltransferase Erm(B) and the other negative for (B), were selected for solithromycin resistance either with direct drug selection or with chemical mutagenesis followed by drug selection. We obtained a series of mutants that we characterized by next-generation sequencing. We found mutations in various ribosomal proteins (L3, L4, L22, L32, and S4) and in the 23S rRNA.

View Article and Find Full Text PDF

Biological organisms have an immense diversity of forms. Some of them exhibit conspicuous and fascinating fractal structures that present self-similar patterns at all scales. How such structures are produced by biological processes is intriguing.

View Article and Find Full Text PDF

Background: The coagulome, defined as the repertoire of genes that locally regulate coagulation and fibrinolysis, is a key determinant of vascular thromboembolic complications of cancer. In addition to vascular complications, the coagulome may also regulate the tumor microenvironment (TME). Glucocorticoids are key hormones that mediate cellular responses to various stresses and exert anti-inflammatory effects.

View Article and Find Full Text PDF

Accurate simultaneous semantic and instance segmentation of a plant 3D point cloud is critical for automatic plant phenotyping. Classically, each organ of the plant is detected based on the local geometry of the point cloud, but the consistency of the global structure of the plant is rarely assessed. We propose a two-level, graph-based approach for the automatic, fast and accurate segmentation of a plant into each of its organs with structural guarantees.

View Article and Find Full Text PDF

How the vast array of neuronal diversity is generated remains an unsolved problem. Here, we investigate how 29 morphologically distinct leg motoneurons are generated from a single stem cell in Drosophila. We identify 19 transcription factor (TF) codes expressed in immature motoneurons just before their morphological differentiation.

View Article and Find Full Text PDF

Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.

View Article and Find Full Text PDF

Artificial audition aims at providing hearing capabilities to machines, computers and robots. Existing frameworks in robot audition offer interesting sound source localization, tracking and separation performance, although involve a significant amount of computations that limit their use on robots with embedded computing capabilities. This paper presents ODAS, the Open embeddeD Audition System framework, which includes strategies to reduce the computational load and perform robot audition tasks on low-cost embedded computing systems.

View Article and Find Full Text PDF

Segmenting three-dimensional (3D) microscopy images is essential for understanding phenomena like morphogenesis, cell division, cellular growth, and genetic expression patterns. Recently, deep learning (DL) pipelines have been developed, which claim to provide high accuracy segmentation of cellular images and are increasingly considered as the state of the art for image segmentation problems. However, it remains difficult to define their relative performances as the concurrent diversity and lack of uniform evaluation strategies makes it difficult to know how their results compare.

View Article and Find Full Text PDF

As telecommunications technology progresses, telehealth frameworks are becoming more widely adopted in the context of long-term care (LTC) for older adults, both in care facilities and in homes. Today, robots could assist healthcare workers when they provide care to elderly patients, who constitute a particularly vulnerable population during the COVID-19 pandemic. Previous work on user-centered design of assistive technologies in LTC facilities for seniors has identified positive impacts.

View Article and Find Full Text PDF

The study of biological tissues is extremely complicated, as they comprise mechanisms and properties at many different temporal and spatial scales. For this reason, modeling is becoming one of the most active and important research fields for the analysis and understanding of tissues. However, this is not a simple task, as it requires mathematical and computational skills, as well as the development of software tools for its implementation.

View Article and Find Full Text PDF

Wearable cardiac sensors pave the way for advanced cardiac monitoring applications based on heart rate variability (HRV). In real-life settings, heart rate (HR) measurements are subject to motion artifacts that may lead to frequent data loss (missing samples in the HR signal), especially for commercial devices based on photoplethysmography (PPG). The current study had two main goals: (i) to provide a white-box quality index that estimates the amount of missing samples in any piece of HR signal; and (ii) to quantify the impact of data loss on feature extraction in a PPG-based HR signal.

View Article and Find Full Text PDF

AV7909 is a next-generation anthrax vaccine under development for post-exposure prophylaxis following suspected or confirmed exposure, when administered in conjunction with the recommended antibacterial regimen. AV7909 consists of the FDA-approved BioThrax vaccine (anthrax vaccine adsorbed) and an immunostimulatory Toll-like receptor 9 agonist oligodeoxynucleotide adjuvant, CPG 7909 The purpose of this study was to evaluate the potential systemic and local toxicity of AV7909 when administered via repeat intramuscular injection to the right thigh muscle (biceps femoris) to male and female Sprague Dawley rats. The vaccine was administered on Days 1, 15, and 29 and the animals were assessed for treatment-related effects followed by a 2-week recovery period to evaluate the persistence or reversibility of any toxic effects.

View Article and Find Full Text PDF

Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive.

View Article and Find Full Text PDF

Plants generate a large variety of shoot forms with regular geometries. These forms emerge primarily from the activity of a stem cell niche at the shoot tip. Recent efforts have established a theoretical framework of form emergence at the shoot tip, which has empowered the use of modelling in conjunction with biological approaches to begin to disentangle the biochemical and physical mechanisms controlling form development at the shoot tip.

View Article and Find Full Text PDF

Military personnel are particularly exposed to stressful events, and overexposure to stress is both physically and mentally unhealthy. While stress management programs, such as the Tactics of Optimized Potential (TOP) and Heart Coherence (HC) have been implemented, their efficiency remains to be evaluated. The objective of this randomized control trial was to evaluate the effectiveness of the two programs among a young male population of 180 military fire fighter recruits.

View Article and Find Full Text PDF

In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation.

View Article and Find Full Text PDF

Objectives: The immune checkpoint molecule PD-L1 (CD274) is a crucial regulator of the tumor immune response. Its expression has been reported in the therapeutic context in Head and Neck Squamous Cell Carcinoma (HNSCC), but it remains unclear how therapeutically approved molecules regulate PD-L1 expression in HNSCC cells.

Materials And Methods: Three HNSCC cell lines (BICR6, PE/CA-PJ34 and PE/CA-PJ41) were used to analyze PD-L1 expression by immunoblotting, immunofluorescence and QPCR.

View Article and Find Full Text PDF

We have analyzed the link between the gene regulation and growth during the early stages of flower development in Arabidopsis. Starting from time-lapse images, we generated a 4D atlas of early flower development, including cell lineage, cellular growth rates, and the expression patterns of regulatory genes. This information was introduced in MorphoNet, a web-based platform.

View Article and Find Full Text PDF

In plant cells, cortical microtubules (CMTs) generally control morphogenesis by guiding cellulose synthesis. CMT alignment has been proposed to depend on geometrical cues, with microtubules aligning with the cell long axis in silico and in vitro. Yet, CMTs are usually transverse in vivo, i.

View Article and Find Full Text PDF

Why living forms develop in a relatively robust manner, despite various sources of internal or external variability, is a fundamental question in developmental biology. Part of the answer relies on the notion of developmental constraints: at any stage of ontogenesis, morphogenetic processes are constrained to operate within the context of the current organism being built. One such universal constraint is the shape of the organism itself, which progressively channels the development of the organism toward its final shape.

View Article and Find Full Text PDF