Publications by authors named "Godfrin C"

The polytopic hemicryptophane cage HC1 combining a cyclotriveratrylene (CTV) unit and a tris(2-aminoethyl)amine (tren) moiety connected by three 2-hydroxyisophthalamide linkers was synthesized in 12 steps. The resulting highly functionalized covalent host is soluble in aqueous medium and has been used to complex Gd(III) ion. The Gd(III)@HC1 complex presents promising relaxivity properties when compared to the clinically used Dotarem MRI agent.

View Article and Find Full Text PDF

This research aimed to study the effects of using a partial vacuum for bread baking on macromolecules and water distribution in gluten-free bread. Bread baking under partial vacuum results in greater oven rise and a larger gas fraction in the crumb. Because water's boiling point decreases under reduced pressure, it was expected that its distribution within the dough and its interactions with the others dough's constituents (mainly starch) would differ from those in bread baked under atmospheric pressure.

View Article and Find Full Text PDF

Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3/2 spin carried by a Tb ion sitting in a single molecular magnet transistor.

View Article and Find Full Text PDF

Presently, one of the most ambitious technological goals is the development of devices working under the laws of quantum mechanics. One prominent target is the quantum computer, which would allow the processing of information at quantum level for purposes not achievable with even the most powerful computer resources. The large-scale implementation of quantum information would be a game changer for current technology, because it would allow unprecedented parallelised computation and secure encryption based on the principles of quantum superposition and entanglement.

View Article and Find Full Text PDF

We monitor the Landau-Zener dynamics of a single-ion magnet inserted into a spin-transistor geometry. For increasing field-sweep rates, the spin reversal probability shows increasing deviations from that of a closed system. In the low-conductance limit, such deviations are shown to result from a dephasing process.

View Article and Find Full Text PDF

We present an original way of continuously reading-out the state of a single electronic spin. Our detection scheme is based on an exchange interaction between the electronic spin and a nearby read-out quantum dot. The coupling between the two systems results in a spin-dependent conductance through the read-out dot and establishes an all electrical and nondestructive single spin detection.

View Article and Find Full Text PDF

Several technological issues have to be faced to realize devices working at the single molecule level. One of the main challenges consists of defining methods to fabricate electrodes to make contact with single molecules. Here, we report the realization of novel spintronic devices made of a TbPc single molecule embedded between two nanometer-separated graphene electrodes, obtained by feedback-controlled electroburning.

View Article and Find Full Text PDF