Publications by authors named "Godfried H J Boers"

Pregnancy, delivery, and postpartal metabolic control was monitored biochemically in five patients (22-38 years of age) with clinically, enzymatically, and genotypically established classical galactosaemia and good dietary compliance. Three of the patients performed breast feeding of their newborns. Monitoring parameters were galactose-1-phosphate and galactitol concentrations in erythrocytes and urinary excretion of galactose, galactitol, galactonate, and lactose.

View Article and Find Full Text PDF

Severely elevated plasma homocysteine (Hcy) levels observed in genetic disorders of Hcy metabolism are associated with pathologies in multiple organs and lead to premature death due to vascular complications. In addition to elevating plasma Hcy, mutations in cystathionine beta-synthase (CBS) or methylenetetrahydrofolate reductase (MTHFR) gene lead to markedly elevated levels of circulating Hcy-thiolactone. The thiooester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues (N-Hcy-protein), which may impair or alter the protein's function.

View Article and Find Full Text PDF

Genetic disorders of homocysteine (Hcy) metabolism or a high-methionine diet lead to elevations of plasma Hcy levels. In humans, severe genetic hyperhomocysteinemia results in premature death from vascular complications whereas dietary hyperhomocysteinemia is often used to induce atherosclerosis in animal models. Hcy is mistakenly selected in place of methionine by methionyl-tRNA synthetase during protein biosynthesis, which results in the formation of Hcy-thiolactone and initiates a pathophysiological pathway that has been implicated in human vascular disease.

View Article and Find Full Text PDF

Homozygosity or compound heterozygosity for the c.833T>C transition (p.I278 T) in the cystathionine beta-synthase (CBS) gene represents the most common cause of pyridoxine-responsive homocystinuria in Western Eurasians.

View Article and Find Full Text PDF

In this review we discuss the hypothesis, and current evidence, that a decreased concentration of the endogenous purine-nucleoside adenosine contributes to the increased cardiovascular risk of patients with hyperhomocysteinemia. In hyperhomocysteinemia, the reaction equilibrium of the reaction catalysed by S-adenosylhomocysteine hydrolase will shift towards synthesis of S-adenosylhomocysteine, at the expense of free adenosine. Adenosine receptor stimulation induces several cardiovascular protective effects, such as vasodilation, inhibition of thrombocyte aggregation, of inflammation and of vascular smooth muscle cell proliferation.

View Article and Find Full Text PDF

Homocystinuria is an inborn error of methionine metabolism that results in raised serum levels of the highly reactive thiol-containing amino acid homocysteine. Homocystinurics often exhibit phenotypic abnormalities that are similar to those found in Marfan syndrome (MFS), a heritable connective tissue disorder that is caused by reduced levels of, or defects in, the cysteine-rich extracellular matrix (ECM) protein fibrillin-1. The phenotypic similarities between homocystinuria and MFS suggest that elevated homocysteine levels may result in an altered function of fibrillin-1.

View Article and Find Full Text PDF

Objective: Endogenous adenosine has several cardioprotective effects. We postulate that in patients with hyperhomocysteinemia increased intracellular formation of S-adenosylhomocysteine decreases free intracellular adenosine. Subsequently, facilitated diffusion of extracellular adenosine into cells through dipyridamole-sensitive transporters is enhanced, limiting adenosine receptor stimulation.

View Article and Find Full Text PDF

1. Methylenetetrahydrofolate reductase (MTHFR) is a regulating enzyme in folate-dependant homocysteine remethylation, because it catalyses the reduction of 5,10 methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-MTHF). 2.

View Article and Find Full Text PDF

Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Most previous investigations focused on the role of homocysteine as direct pathogenetic factor for these adverse vascular events. However, the exact pathophysiological mechanism is still unknown.

View Article and Find Full Text PDF

Hyperhomocysteinaemia is generally accepted as an independent and graded risk factor for both arterial occlusive disease and venous thrombosis. The only way of homocysteine degradation is conversion to cysteine in the transsulfuration pathway in which the regulating step is catalysed by cystathionine beta-synthase (CBS). Mild impairment of CBS function could therefore affect homocysteine concentration, in particular after methionine loading, and consequently cardiovascular disease (CVD) risk.

View Article and Find Full Text PDF

Human cystathionine beta-synthase is a heme protein that catalyzes the condensation of serine and homocysteine to form cystathionine in a pyridoxal phosphate-dependent reaction. Mutations in this enzyme are the leading cause of hereditary hyperhomocysteinemia with attendant cardiovascular and other complications. The enzyme is activated approximately 2-fold by the allosteric regulator S-adenosylmethionine (AdoMet), which is presumed to bind to the C-terminal regulatory domain.

View Article and Find Full Text PDF

Elevated levels of total homocysteine and low folate in blood are independent and graded risk factors for arterial occlusive disease. An impairment of folate distribution can be an important cause of hyperhomocysteinemia. Glutamate carboxypeptidase II (GCPII) regulates the absorption of dietary folates.

View Article and Find Full Text PDF

Objectives: We evaluated the effect of therapy with folic acid and cobalamin on coronary endothelial function, expressed as a change in volumetric coronary blood flow (CBF), in hyperhomocysteinemic patients with coronary artery disease (CAD).

Background: Hyperhomocysteinemia is an independent risk factor for CAD. The mechanism responsible for this increased risk is unclear, but it is generally assumed that hyperhomocysteinemia causes endothelial dysfunction.

View Article and Find Full Text PDF

Background: Hyperhomocysteinemia is an independent risk factor for cardiovascular disease (CVD). Intracellular vitamin B(12) deficiency may lead to increased plasma total homocysteine (tHcy) concentrations and because transcobalamin (TC) is the plasma transporter that delivers vitamin B(12) to cells, genetic variation in the TC gene may affect intracellular vitamin B(12) availability and, consequently, tHcy concentrations.

Methods: We examined five sequence variants, i.

View Article and Find Full Text PDF