Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis.
View Article and Find Full Text PDFAtherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Resident cells of the artery wall and cells of the immune system participate in atherogenesis. This process is influenced by plasma lipoproteins, genetics, and the hemodynamics of the blood flow in the artery.
View Article and Find Full Text PDFPurpose Of Review: Lipoproteins have significant role in both the promotion and prevention of atherosclerosis. This brief review will focus on recent reports on relationship between HDL and HDL subclasses and their composition and function, the role of apoC-III in metabolism of triglyceride-rich lipoproteins, the impact of Lipoprotein (a) (Lp(a)) on endothelial cells, and the mechanism of uptake of aggregated LDL by macrophages.
Recent Findings: The complexity of the protein and lipid content of murine and human HDL and their relationship to its cholesterol efflux capacity have been examined.
Natural antibodies (NAbs) are important regulators of tissue homeostasis and inflammation and are thought to have diverse protective roles in a variety of pathological states. E06 is a T15 idiotype IgM NAb exclusively produced by B-1 cells, which recognizes the phosphocholine (PC) head group in oxidized phospholipids on the surface of apoptotic cells and in oxidized LDL (OxLDL), and the PC present on the cell wall of . Here we report that titers of the E06 NAb are selectively increased several-fold in -deficient mice, whereas total IgM and IgM antibodies recognizing other oxidation specific epitopes such as in malondialdehyde-modified LDL (MDA-LDL) and OxLDL were not increased.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2019
Natural killer T (NKT) cells are a distinct subset of lymphocytes that bridge the innate and adaptive immune response and can be divided into type I invariant NKT cells (iNKT) and type II NKT cells. The objective of this study is to examine the effects of NKT cell on lipid metabolism and the initiation and progression of atherosclerosis in LDL receptor deficient (LDLR) mice. Mice were fed an atherogenic diet for 4 or 8 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured.
View Article and Find Full Text PDFMacrophages are core cellular elements of both early and advanced atherosclerosis. They take up modified lipoproteins and become lipid-loaded foam cells and secrete factors that influence other cell types in the artery wall involved in atherogenesis. Apoproteins E, AI, and SAA are all found on HDL which can enter the artery wall.
View Article and Find Full Text PDFApoprotein E (apoE) is a multifunctional protein. Its best-characterized function is as a ligand for low-density lipoprotein (LDL) receptor family members to mediate the clearance of apoB-containing atherogenic lipoproteins. Among its other functions, apoE is involved in cholesterol efflux, especially from cholesterol-loaded macrophage foam cells and other atherosclerosis-relevant cells, and in reverse cholesterol transport.
View Article and Find Full Text PDFBackground: Hypercholesterolemia-induced decreased availability of nitric oxide (NO) is a major factor in cardiovascular disease. We previously established that cholesterol suppresses endothelial inwardly rectifying K (Kir) channels and that Kir2.1 is an upstream mediator of flow-induced NO production.
View Article and Find Full Text PDFObesity is a chronic inflammatory state characterized by altered levels of adipose tissue immune cell populations. Natural killer T (NKT) cells are CD1d restricted lymphocyte subsets that recognize lipid antigens whose level decreases in obese adipose tissue. However, studies in mice with deficiency or increased levels of NKT cells have yielded contradictory results, so the exact role of these cells in obesity and adipose tissue inflammation is not yet established.
View Article and Find Full Text PDFAtherosclerosis is the underlying basis for most cardiovascular diseases. It is a chronic inflammation affecting the arterial intima and is promoted by hypercholesterolemia. Cells of both the innate and adaptive immune systems contribute to this inflammation with macrophages and T cells being the most abundant immune cells in the atherosclerotic plaques.
View Article and Find Full Text PDFUsing genetic and biochemical approaches, we investigated proteins that regulate macrophage cholesterol efflux capacity (CEC) and ABCA1-specific CEC (ABCA1 CEC), 2 functional assays that predict cardiovascular disease (CVD). Macrophage CEC and the concentration of HDL particles were markedly reduced in mice deficient in apolipoprotein A-I (APOA1) or apolipoprotein E (APOE) but not apolipoprotein A-IV (APOA4). ABCA1 CEC was markedly reduced in APOA1-deficient mice but was barely affected in mice deficient in APOE or APOA4.
View Article and Find Full Text PDFPurpose Of Review: Previous epidemiological studies and studies in experimental animals have provided strong evidence for the atheroprotective effect of HDL and its major apoprotein, apolipoprotein A-I (apoA-I). Identification of genetic loci associating apoA-I/HDL with cardiovascular disease is needed to establish a causal relationship.
Recent Findings: Pharmacological interventions to increase apoA-I or HDL cholesterol levels in humans are not associated with reduction in atherosclerosis.
Atherosclerosis is a chronic inflammatory disorder that develops in response to hyperlipidaemia. Cells from both the innate and adaptive immune systems contribute to the development of atherosclerotic lesions. The role of natural killer T (NKT) cells in response to microbial pathogens and inflammatory disorders such as atherosclerosis has received increasing attention in the past 10-15 years.
View Article and Find Full Text PDFPurpose Of Review: Atherosclerosis is a chronic inflammation associated with increased expression of the acute phase isoforms of serum amyloid A (SAA) and in humans is a plasma biomarker for future cardiovascular events. However, whether SAA is only a biomarker or participates in the development of cardiovascular disease is not well characterized. The purpose of this review is to summarize putative functions of SAA relevant to atherogenesis and in-vivo murine studies that directly examine the effect of SAA on atherosclerosis.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2016
Murine models of atherosclerosis are useful for investigating the environmental and genetic influences on lesion formation and composition. Apoe(-/-) and Ldlr(-/-) mice are the 2 most extensively used models. The models differ in important ways with respect to the precise mechanism by which their absence enhances atherosclerosis, including differences in plasma lipoproteins.
View Article and Find Full Text PDFWe previously showed that feeding a Western-type diet (WTD) to Ldlr(-/-) mice lacking serum amyloid A (SAA) (Saa(-/-) Ldlr(-/-) mice), the level of total blood monocytes was higher than in Ldlr(-/-) mice. In this investigation we demonstrate that higher levels of bone marrow monocytes and macrophage-dendritic cell progenitor (MDP) cells were found in WTD-fed Saa(-/-) Ldlr(-/-) mice compared to Ldlr(-/-) mice and lower levels of GMP cells and CMP cells in Ldlr(-/-) mice. These data indicate that SAA regulates the level of bone marrow monocytes and their myeloid progenitors in hyperlipidemic Ldlr(-/-) mice.
View Article and Find Full Text PDFBackground And Aims: Anti-HMGB1 autoimmunity plays a role in systemic lupus erythematosus (SLE). Because SLE increases atherosclerosis, we asked whether the same autoimmunity might play a role in atherogenesis.
Methods: We looked for the induction of HMGB1-specific B and T cell responses by a western-type diet (WTD) in the Apoe(-/-) mouse model of atherosclerosis.
Objective: Enzyme-modified nonoxidized low-density lipoprotein (ELDL) is present in human atherosclerotic lesions. Our objective is to understand the mechanisms of ELDL uptake and its effects on vascular smooth muscle cells (SMC).
Approach And Results: Transformation of murine aortic SMCs into foam cells in response to ELDL was analyzed.
ApoE is a multifunctional protein that is expressed by many cell types that influences many aspects of cardiovascular physiology. In humans, there are three major allelic variants that differentially influence lipoprotein metabolism and risk for the development of atherosclerosis. Apoe-deficient mice and human apoE isoform knockin mice, as well as hypomorphic Apoe mice, have significantly contributed to our understanding of the role of apoE in lipoprotein metabolism, monocyte/macrophage biology, and atherosclerosis.
View Article and Find Full Text PDF