Photosynthetically active radiation (Q)-use efficiency (epsilon) is an important parameter for deriving carbon fluxes between forest canopies and the atmosphere from meteorological ground and remote sensing data. A common approach is to assume gross primary production (P(g)) and net primary production (P(n)) are proportional to Q absorbed by vegetation (Q(abs)) by defining the proportionality constants epsilon(Pg) and epsilon(Pn) (for P(g) and P(n), respectively). Although remote sensing and climate monitoring provide Q(abs) and other meteorological data at the global scale, information on epsilon is particularly scarce in remote tropical areas.
View Article and Find Full Text PDFGross canopy photosynthesis (P(g)) can be simulated with canopy models or retrieved from turbulent carbon dioxide (CO2) flux measurements above the forest canopy. We compare the two estimates and illustrate our findings with two case studies. We used the three-dimensional canopy model MAESTRA to simulate P(g) of two spruce forests differing in age and structure.
View Article and Find Full Text PDF