Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics.
View Article and Find Full Text PDFValidation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2023
Purpose: Validation metrics are a key prerequisite for the reliable tracking of scientific progress and for deciding on the potential clinical translation of methods. While recent initiatives aim to develop comprehensive theoretical frameworks for understanding metric-related pitfalls in image analysis problems, there is a lack of experimental evidence on the concrete effects of common and rare pitfalls on specific applications. We address this gap in the literature in the context of colon cancer screening.
View Article and Find Full Text PDFChallenges have become the state-of-the-art approach to benchmark image analysis algorithms in a comparative manner. While the validation on identical data sets was a great step forward, results analysis is often restricted to pure ranking tables, leaving relevant questions unanswered. Specifically, little effort has been put into the systematic investigation on what characterizes images in which state-of-the-art algorithms fail.
View Article and Find Full Text PDFValidation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers.
View Article and Find Full Text PDFRecent Pat Inflamm Allergy Drug Discov
May 2013
Orthopaedic joint implants and osteosynthetic materials are progressively being employed more often. Complications mainly include physical-mechanical problems and infections. Uncommonly, allergic reactions to an alloy metal or a bone cement component have been implicated.
View Article and Find Full Text PDFAllergies against bone cement or bone cement components have been well-described. We report on a 63-year-old patient who presented with progressive vitiligo all over the body after implantation of a cemented total knee replacement. A dermatological examination was performed and an allergy to benzoyl peroxide was found.
View Article and Find Full Text PDF