Here, we report a form of oligonucleotide-directed mutagenesis for precision genome editing in plants that uses single-stranded oligonucleotides (ssODNs) to precisely and efficiently generate genome edits at DNA strand lesions made by DNA double strand break reagents. Employing a transgene model in Arabidopsis (Arabidopsis thaliana), we obtained a high frequency of precise targeted genome edits when ssODNs were introduced into protoplasts that were pretreated with the glycopeptide antibiotic phleomycin, a nonspecific DNA double strand breaker. Simultaneous delivery of ssODN and a site-specific DNA double strand breaker, either transcription activator-like effector nucleases (TALENs) or clustered, regularly interspaced, short palindromic repeats (CRISPR/Cas9), resulted in a much greater targeted genome-editing frequency compared with treatment with DNA double strand-breaking reagents alone.
View Article and Find Full Text PDFDifferences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need.
View Article and Find Full Text PDFKnowing where and when different genes express at the shoot apex during the transition to flowering will help in understanding this developmental switch. The CDKA family of serine/threonine kinase genes are appropriate candidates for such developmental switching as they are involved in the regulation of the G1/S and G2/M boundaries of the cell cycle (see review by Dudits et al. 2007) and so could regulate increases of cell division associated with flowering.
View Article and Find Full Text PDFWe have identified three Arabidopsis genes with GAMYB-like activity, AtMYB33, AtMYB65, and AtMYB101, which can substitute for barley (Hordeum vulgare) GAMYB in transactivating the barley alpha-amylase promoter. We have investigated the relationships between gibberellins (GAs), these GAMYB-like genes, and petiole elongation and flowering of Arabidopsis. Within 1 to 2 d of transferring plants from short- to long-day photoperiods, growth rate and erectness of petioles increased, and there were morphological changes at the shoot apex associated with the transition to flowering.
View Article and Find Full Text PDFFlowering (inflorescence formation) of the grass Lolium temulentum is strictly regulated, occurring rapidly on exposure to a single long day (LD). During floral induction, L. temulentum differs significantly from dicot species such as Arabidopsis in the expression, at the shoot apex, of two APETALA1 (AP1)-like genes, LtMADS1 and LtMADS2, and of L.
View Article and Find Full Text PDFLong-day exposure of the grass Lolium temulentum may regulate flowering via changes in gibberellin (GA) levels. Therefore, we have examined both GA levels and expression of a MYB transcription factor that is specific to the GA signal transduction pathway in monocots. This MYB gene from L.
View Article and Find Full Text PDFEarly changes in the concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) were investigated in the larger axillary bud of 2-week-old Phaseolus vulgaris L. cv Tender Green seedlings after removal of the dominant apical bud. Concentrations of these two hormones were measured at 4, 6, 8, 12 and 24 hours following decapitation of the apical bud and its subtending shoot.
View Article and Find Full Text PDFQuantitative analysis of indole-3-acetic acid (IAA) using selected ion monitoring gas chromatography-mass spectrometry (GC-MS) with (13)C(6)[benzene ring]-IAA as the internal standard was used to compare the quantitative accuracy of commercial enzyme-linked immunoabsorbent assay (ELISA) kits. Plant materials differed in the amount of purification required prior to use of ELISA for reliable estimates to be made. Purification similar to that obtained by at least one high performance liquid chromatographic (HPLC) step was generally necessary prior to ELISA analysis of plant materials.
View Article and Find Full Text PDF