Publications by authors named "Gobinda Saha"

ANSYS Maxwell was used to replicate the conditions of two potential electrospinning configurations: a needle-plate and a parallel-plate configuration. Simulations showed that the electric field generated within the parallel-plate configuration was much more uniform than that within the needle-plate configuration. Both configurations were assembled and used electrospin fibers at three different spinning distances (10 cm, 12 cm, and 15 cm), at a consistent electric field strength of 1.

View Article and Find Full Text PDF

Functional interfaces between electronics and biological matter are essential to diverse fields including health sciences and bio-engineering. Here, we report the discovery of spontaneous (no external energy input) hydrogen transfer from biological glucose reactions into SmNiO, an archetypal perovskite quantum material. The enzymatic oxidation of glucose is monitored down to ~5 × 10 M concentration via hydrogen transfer to the nickelate lattice.

View Article and Find Full Text PDF

The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention.

View Article and Find Full Text PDF

Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.

View Article and Find Full Text PDF

A multifunctional macromolecular thiol (TPVA) obtained by esterification of poly(vinyl alcohol) (PVA) with 3-mercaptopropionic acid was characterized by a combination of NMR, IR, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC), and was used as a wheat gluten (WG) reactive modifier. The effect of TPVA molecular weight (M(w) = 2000, 9500, 50 000, and 205 000) and blend composition (5, 20, and 40% w/w TPVA/WG) on the mechanical properties of compression-molded bars indicates that TPVA/WG blends increase the fracture strength by up to 76%, the elongation by 80%, and the modulus by 25% above WG. In contrast, typical WG additives such as glycerol and sorbitol improve flexibility but decrease modulus and strength.

View Article and Find Full Text PDF