Publications by authors named "Gobind Das"

DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.

View Article and Find Full Text PDF

Effective planning, management, and control of industrial plants and processes have exploded in popularity to enhance global sustainability in recent decades. In this arena, computational predictive models have significantly contributed to plant performance optimization. In this regard, this research proposes an Improvised Grey Wolf Optimizer (IGWO) aided Artificial Neural Network (ANN) predictive model (IGWO-ANN Model-1 to 4) to predict the performance (permeate flux) of desalination plants accurately.

View Article and Find Full Text PDF

Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies.

View Article and Find Full Text PDF

Carbon dioxide (CO) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption.

View Article and Find Full Text PDF

In this article, we present a systematic investigation on a multistep nanosphere lithography technique to uncover its potential in fabricating a wide range of two- and three-dimensional nanostructures. A tilted (polar angle) electron beam shower on a nanosphere mask results in an angled shadow mask deposition. The shape of the shadow also depends on the azimuthal angle of the mask sitting on top of the substrate.

View Article and Find Full Text PDF

The activation of the T cell mediated immune response relies on the fine interaction between the T cell receptor on the immune cell and the antigen-presenting major histocompatibility complex (MHC) molecules on the membrane surface of antigen-presenting cells. Both the distribution and quantity of MHC/peptide complexes and their adequate morphological presentation affect the activation of the immune cells. In several types of cancer the immune response is down-regulated due to the low expression of MHC-class I (MHC-I) molecules on the cell's surface, and in addition, the mechanical properties of the membrane seem to play a role.

View Article and Find Full Text PDF

The phonon transport properties of CuSCN and CuSeCN have been investigated using the density functional theory and semiclassical Boltzmann transport theory. The Perdew-Burke-Ernzerhof functional shows an indirect (direct) electronic band gap of 2.18 eV (1.

View Article and Find Full Text PDF

Methods to produce protein amyloid fibrils, in vitro, and in situ structure characterization, are of primary importance in biology, medicine, and pharmacology. We first demonstrated the droplet on a super-hydrophobic substrate as the reactor to produce protein amyloid fibrils with real-time monitoring of the growth process by using combined light-sheet microscopy and thermal imaging. The molecular structures were characterized by Raman spectroscopy, X-ray diffraction and X-ray scattering.

View Article and Find Full Text PDF

Biomarkers detection at an ultra-low concentration in biofluids (blood, serum, saliva, etc.) is a key point for the early diagnosis success and the development of personalized therapies. However, it remains a challenge due to limiting factors like () the complexity of analyzed media, and () the aspecificity detection and the poor sensitivity of the conventional methods.

View Article and Find Full Text PDF

In this paper, we propose the use of a standing nanowires array, constituted by plasmonic active gold wires grown on iron disks, and partially immersed in a supporting alumina matrix, for surface-enhanced Raman spectroscopy applications. The galvanic process was used to fabricate nanowires in pores of anodized alumina template, making this device cost-effective. This fabrication method allows for the selection of size, diameter, and spatial arrangement of nanowires.

View Article and Find Full Text PDF

The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features.

View Article and Find Full Text PDF

Plasmonic color-graded systems are devices featuring a spatially variable plasmonic response over their surface. They are widely used as nanoscale color filters; their typical size is small enough to allow integration with miniaturized electronic circuits, paving the way to realize novel nanophotonic devices. Currently, most plasmonic color-graded systems are intrinsically discrete because their chromatic response exploits the tailored plasmon resonance of microarchitectures characterized by different size or geometry for each target color.

View Article and Find Full Text PDF

In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis.

View Article and Find Full Text PDF

Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers.

View Article and Find Full Text PDF
Article Synopsis
  • In 1953, the structure of DNA was first determined using x-ray fiber diffraction, leading to various attempts to capture direct images of DNA for detailed analysis.
  • Obtaining these direct images is challenging due to the low contrast of DNA components and the difficulty in preparing samples without altering their shape.
  • Researchers successfully captured a high-resolution image of a single DNA molecule using an advanced electron microscope, enabling precise measurement of its features and providing insights for biological studies that require single-molecule analysis.
View Article and Find Full Text PDF

Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques.

View Article and Find Full Text PDF

In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli.

View Article and Find Full Text PDF

We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 10(4) with respect to the flat gold surface.

View Article and Find Full Text PDF

We present a simple method that is able to predict the resonant frequencies of a metallic conical nanoantenna. The calculation is based on an integral relation that takes into account the dependence of the effective refractive index of the plasmonic mode on the cone radius. Numerical simulations retrieving the near field properties of nanocones with different lengths are also performed for comparison.

View Article and Find Full Text PDF

Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering.

View Article and Find Full Text PDF

In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance.

View Article and Find Full Text PDF

We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications.

View Article and Find Full Text PDF

Periodic and reproducible gold nanocuboids with various matrix dimensions and with different inter-particle gaps were fabricated by means of top-down technique. Rhodamine 6G was used as a probe molecule to optimize the design and the fabrication of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated.

View Article and Find Full Text PDF

We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region.

View Article and Find Full Text PDF

Resonant dipole nanoantennas promise to considerably improve the capabilities of terahertz spectroscopy, offering the possibility of increasing its sensitivity through local field enhancement, while in principle allowing unprecedented spatial resolutions, well below the diffraction limit. Here, we investigate the resonance properties of ordered arrays of terahertz dipole nanoantennas, both experimentally and through numerical simulations. We demonstrate the tunability of this type of structures, in a range (∼1-2 THz) that is particularly interesting and accessible by means of standard zinc telluride sources.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvkateih6udfdojlnqlg6mkc0muau7g3j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once