Publications by authors named "Gobichettipalayam Balasubramaniam Maadurshni"

Objective: Bisphenol A (BPA) is a ubiquitous pollutant worldwide and 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is considered a major active metabolite of BPA with a wide range of potent toxicological properties. However, its adverse outcome pathway (AOP) on the hepatic and renal system has not yet been explored.

Methods: Hence, the current study evaluated its effect on cell survival, oxidative stress, and apoptosis.

View Article and Find Full Text PDF

For Bacterial Nanocellulose (BNC) production, standard methods are well-established, but there is a pressing need to explore cost-effective alternatives for BNC commercialization. This study investigates the feasibility of using syrup prepared from maize stalk as a valuable nutrient and sustainable carbon source for BNC production. Our study achieved a remarkable BNC production yield of 19.

View Article and Find Full Text PDF

Human exposure to the hazardous chemical, Bisphenol A (BPA), is almost ubiquitous. Due to the prevalence of hypertension (CVD risk factor) in the aged human population, it is necessary to explore its adverse effect in hypertensive subjects. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to human exposure relevant low dose of BPA (50 μg/kg) for 30 days period.

View Article and Find Full Text PDF

Humans are constantly exposed to low concentrations of ubiquitous environmental pollutant, Bisphenol A (BPA). Due to the prevalence of hypertension (one of the major risk factors of cardiovascular disease [CVD]) in the population, it is necessary to explore the adverse effect of BPA under hypertension associated pathogenic milieu. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to low dose BPA (50 μg/kg) for 30 days period.

View Article and Find Full Text PDF

Human exposure to plastic contaminated foods and environmental micro/nano plastic derived chemicals necessitates system-wide health risk assessment. Hence, current study intend to explore the mode of action (MoA) based adverse outcome pathways of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), the major active metabolite of bisphenol A (BPA). The computational study employed broad range of target prediction, systems biology tools and molecular docking protocols.

View Article and Find Full Text PDF

Recent evidences illustrated that the release of aluminum oxide nanoparticles (AlO-NPs) into the biosphere may pose risk to the environment and cause adverse effects on living organisms including humans. The current study assessed the hepatotoxic effects of AlO-NPs on developing chicken embryo and cell culture models. Results demonstrated that AlO-NPs exposure causes histological abnormalities and increased the level of tissue damage markers (ALP, AST, and ALT) in the embryonic liver.

View Article and Find Full Text PDF

The effects of environmental chemicals on health outcomes may be underestimated due to deficiency of knowledge regarding the actions of compounds on toxico-pathogenic mechanisms underlying biological systems outcomes. In this regard, the current study aimed to explore the potential target-pathway-disease relationship attributed to bisphenol A (BPA) responses in target tissues. Computational methods including reverse pharmacophore mapping approach, structural similarity based search and kinome wide interaction profiling were employed with molecular docking validation.

View Article and Find Full Text PDF

The precise toxico-pathogenic effects of zinc oxide nanoparticles (ZnO-NPs) on the cardiovascular system under normal and cardiovascular disease (CVD) risk factor milieu are unclear. In this study, we have investigated the dose-dependent effects of ZnO-NPs on developing chicken embryo and cell culture (H9c2 cardiomyoblast, HUVEC and aortic VSMC) models. In addition, the potentiation effect of ZnO-NPs on simulated risk factor conditions was evaluated using; 1.

View Article and Find Full Text PDF