Publications by authors named "Gobert A"

Enteropathogenic (EPEC) is a bacterium that causes attaching/effacing (A/E) lesions and serious diarrheal disease, a major health issue in developing countries. EPEC pathogenicity results from the effect of virulence factors and dysregulation of host responses. Polyamines, including spermidine, play a major role in intestinal homeostasis.

View Article and Find Full Text PDF

Helicobacter pylori is the primary cause of gastric cancer, and there is a need to discover new molecular targets for therapeutic intervention in H. pylori disease progression. We have previously shown that spermine oxidase (SMOX), the enzyme that catabolizes the back-conversion of the polyamine spermine to spermidine, is upregulated during infection and is associated with increased cancer risk in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Avelumab is a treatment approved for patients with advanced urothelial carcinoma (aUC) who did not experience disease progression after platinum-based chemotherapy, based on findings from the JAVELIN Bladder 100 trial.
  • The AVENANCE study included 595 patients and assessed the effectiveness and safety of avelumab as a maintenance therapy, revealing a median overall survival of 21.3 months.
  • The results demonstrated that avelumab is effective in this patient population, reinforcing its role in managing aUC in real-world settings.
View Article and Find Full Text PDF

Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen Helicobacter pylori. Herein our aim was to investigate the role of CTH in colonic inflammation.

View Article and Find Full Text PDF

Castration-resistant metastatic prostate cancer remains lethal and a therapeutic challenge. Current strategies are geared towards the personalization of treatments based on the identification of relevant molecular targets, including genomic alterations involved in tumoral processes. Among these novel targeted therapies, poly-ADP-ribose polymerase inhibitors (PARPi), by blocking the action of enzymes involved in deoxyribonucleic acid (DNA) repair, induce the destruction of cells carrying defects in homologous recombination repair, often associated with alterations in genes involved in this mechanism.

View Article and Find Full Text PDF

Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * Patients with Crohn's disease show higher levels of the enzymes related to hypusination in their colon cells, yet deleting these enzymes in immune cells of mice does not affect inflammation or cancer development in models of colitis.
  • * Findings suggest that while targeting the hypusine pathway might be beneficial for gut health in inflammatory bowel disease, focusing on myeloid cell hypusination is unlikely to improve colitis or related cancer outcomes.
View Article and Find Full Text PDF

The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium.

View Article and Find Full Text PDF

RNase P is the essential activity that performs the 5' maturation of transfer RNA (tRNA) precursors. Beyond the ancestral form of RNase P containing a ribozyme, protein-only RNase P enzymes termed PRORP were identified in eukaryotes. In human mitochondria, PRORP forms a complex with two protein partners to become functional.

View Article and Find Full Text PDF

Considering the growing interest in non-Saccharomyces wine yeasts, and notably in the context of mixed fermentations with S. cerevisiae, understanding their nutritional behaviors is essential to ensure better management of these fermentations. The vitaminic consumption of three non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima and Torulaspora delbrueckii) was investigated during their growth in wine-like conditions, providing initial evidence that they consume different vitamers.

View Article and Find Full Text PDF

Although vitamins are prime actors in yeast metabolism, the nature and the extent of their requirement in Saccharomyces cerevisiae in winemaking remains little understood. To fill this gap, the evolution of 8 water-soluble vitamins and their diverse vitamers during its alcoholic fermentation in a synthetic must medium was monitored, providing the first evidence of the consumption of vitamers by five commercial S. cerevisiae strains, and highlighting the existence of preferential vitameric sources for its nutrition.

View Article and Find Full Text PDF

Background & Aims: The amino acid hypusine, synthesized from the polyamine spermidine by the enzyme deoxyhypusine synthase (DHPS), is essential for the activity of eukaryotic translation initiation factor 5A (EIF5A). The role of hypusinated EIF5A (EIF5A) remains unknown in intestinal homeostasis. Our aim was to investigate EIF5A in the gut epithelium in inflammation and carcinogenesis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major health problem worldwide. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation and form covalent adducts with amine-containing macromolecules. We have shown high levels of adducts of isoLGs in colonic epithelial cells of patients with CRC.

View Article and Find Full Text PDF

Pathogenic enteric present a significant burden to global health. Food-borne enteropathogenic (EPEC) and Shiga toxin-producing (STEC) utilize attaching and effacing (A/E) lesions and actin-dense pedestal formation to colonize the gastrointestinal tract. Talin-1 is a large structural protein that links the actin cytoskeleton to the extracellular matrix though direct influence on integrins.

View Article and Find Full Text PDF

Vitamins are major cofactors to numerous key metabolic pathways in enological yeasts, and both thiamine and biotin, notably, are believed to be essential to yeast fermentation and growth, respectively. In order to further assess and clarify their role in winemaking, and in the resulting wine, alcoholic fermentations of a commercial active dried yeast were conducted in synthetic media containing various concentrations of both vitamins. Growth and fermentation kinetics were monitored and proved the essential character of biotin in yeast growth, and of thiamine in fermentation.

View Article and Find Full Text PDF

Stomach cancer is a leading cause of cancer death. Helicobacter pylori is a bacterial gastric pathogen that is the primary risk factor for carcinogenesis, associated with its induction of inflammation and DNA damage. Dicarbonyl electrophiles are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules.

View Article and Find Full Text PDF

High-throughput sequencing approaches, which target a taxonomically discriminant locus, allow for in-depth insight into microbial communities' compositions. Although microorganisms are historically investigated by cultivation on artificial culture media, this method presents strong limitations, since only a limited proportion of microorganisms can be grown in vitro. This pitfall appears even more limiting in enological and winemaking processes, during which a wide range of molds, yeasts, and bacteria are observed at the different stages of the fermentation course.

View Article and Find Full Text PDF

Although prime compounds in yeast metabolism, vitamins in oenology have remained mostly unexplored for decades. Here, a premier characterization of the vitamers in white grape musts has been drawn. A RP-HPLC method has therefore been developed for their direct analysis in musts, allowing for the determination of 19 different vitamers from 8 water-soluble vitaminic groups, including thiamine forms T, TMP and TPP, with LODs between 0.

View Article and Find Full Text PDF

Colonization by is associated with gastric diseases, ranging from superficial gastritis to more severe pathologies, including intestinal metaplasia and adenocarcinoma. The interplay of the host response and the pathogen affect the outcome of disease. One major component of the mucosal response to is the activation of a strong but inefficient immune response that fails to control the infection and frequently causes tissue damage.

View Article and Find Full Text PDF

Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution.

View Article and Find Full Text PDF

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H.

View Article and Find Full Text PDF

Gastric cancer (GC) is the fifth most common cancer and the fourth most common cause of cancer-related death worldwide. The intestinal type of GC progresses from acute to chronic gastritis, multifocal atrophic gastritis, intestinal metaplasia, dysplasia, and carcinoma. Infection of the stomach by Helicobacter pylori, a Gram-negative bacterium that infects approximately 50% of the world's population, is the causal determinant that initiates the gastric inflammation and then disease progression.

View Article and Find Full Text PDF

In the event of a radiological accident involving external exposure of one or more victims and potential high doses, it is essential to know the dose distribution within the body in order to sort the victims according to the severity of the irradiation and then to take them to the most suitable medical facilities. However, there are currently few techniques that can be rapidly deployed on field and capable of characterizing an irradiation. Therefore, a numerical simulation tool has been designed.

View Article and Find Full Text PDF

In eukaryotes, general mRNA decay requires the decapping complex. The activity of this complex depends on its catalytic subunit, DECAPPING2 (DCP2), and its interaction with decapping enhancers, including its main partner DECAPPING1 (DCP1). Here, we report that in Arabidopsis thaliana, DCP1 also interacts with a NYN domain endoribonuclease, hence named DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1).

View Article and Find Full Text PDF

Background & Aims: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis.

View Article and Find Full Text PDF