Correction for 'Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence' by Naohiro Kameta , , 2008, , 1681-1687, https://doi.org/10.1039/B803742F.
View Article and Find Full Text PDFDisinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells.
View Article and Find Full Text PDFNeuropsychopharmacology
December 2021
Following repeated opioid use, some dependent individuals experience persistent cognitive deficits that contribute to relapse of drug-taking behaviors, and one component of this response may be mediated by the endogenous dynorphin/kappa opioid system in neocortex. In C57BL/6 male mice, we find that acute morphine withdrawal evokes dynorphin release in the medial prefrontal cortex (PFC) and disrupts cognitive function by activation of local kappa opioid receptors (KORs). Immunohistochemical analyses using a phospho-KOR antibody confirmed that both withdrawal-induced and optically evoked dynorphin release activated KOR in PFC.
View Article and Find Full Text PDFSerotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients.
View Article and Find Full Text PDFFor thirsty animals, fluid intake provides both satiation and pleasure of drinking. How the brain processes these factors is currently unknown. Here, we identified neural circuits underlying thirst satiation and examined their contribution to reward signals.
View Article and Find Full Text PDFDown syndrome (DS) is a genetic disorder that causes cognitive impairment. The staggering effects associated with an extra copy of human chromosome 21 (HSA21) complicates mechanistic understanding of DS pathophysiology. We examined the neuron-astrocyte interplay in a fully recapitulated HSA21 trisomy cellular model differentiated from DS-patient-derived induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDFThe release behavior of fluorescent dyes, oligo DNAs and spherical proteins from self-assembled organic nanotubes having 7-9 nm inner diameters has been studied in terms of novel nanocontainers with high-axial ratios. Both much smaller inner diameters and asymmetric inner and outer surfaces are characteristic of the nanotubes. The acid-dissociation constant (pKa) of the amino groups located at the inner surface and the thermal phase transition temperature (Tg-l) of the nanotube were evaluated based on the pH titration and variable-temperature circular dichroism (CD) spectroscopic experiments, respectively.
View Article and Find Full Text PDF