Publications by authors named "Gmpr Souza"

The homeostatic regulation of pulmonary ventilation, and ultimately arterial PCO, depends on interactions between respiratory chemoreflexes and arousal state. The ventilatory response to CO is triggered by neurons in the retrotrapezoid nucleus (RTN) that function as sensors of central pH, which can be identified in adulthood by the expression of Phox2b and neuromedin B. Here, we examine the dynamic response of genetically defined RTN neurons to hypercapnia and arousal state in freely behaving adult male and female mice using the calcium indicator jGCaMP7 and fiber photometry.

View Article and Find Full Text PDF

The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain.

View Article and Find Full Text PDF

S1P (sphingosine 1-phosphate) receptor modulator (SRM) drugs interfere with lymphocyte trafficking by downregulating lymphocyte S1P receptors. While the immunosuppressive activity of SRM drugs has proved useful in treating autoimmune diseases such as multiple sclerosis, that drug class is beset by on-target liabilities such as initial dose bradycardia. The S1P that binds to cell surface lymphocyte S1P receptors is provided by S1P transporters.

View Article and Find Full Text PDF

Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of Neuromedin-B expressing chemoreceptor neurons in the retrotrapezoid nucleus (RTN) in regulating breathing in response to carbon dioxide levels.
  • Selective removal of these RTN neurons in mice leads to significant breathing issues, such as respiratory acidosis and sleep disruptions, highlighting their importance in maintaining stable ventilation.
  • The findings suggest that while RTN neurons are crucial for responding to carbon dioxide, mechanisms like peripheral chemoreceptors may compensate for their loss, indicating their potential role in sleep-related breathing disorders in humans.
View Article and Find Full Text PDF

In mammals, the pontine noradrenergic system influences nearly every aspect of central nervous system function. A subpopulation of pontine noradrenergic neurons, called A5, are thought to be important in the cardiovascular response to physical stressors, yet their function is poorly defined. We hypothesized that activation of A5 neurons drives a sympathetically mediated increase in blood pressure (BP).

View Article and Find Full Text PDF

Hemorrhage initially triggers a rise in sympathetic nerve activity (SNA) that maintains blood pressure (BP); however, SNA is suppressed following severe blood loss causing hypotension. We hypothesized that adrenergic C1 neurons in the rostral ventrolateral medulla (C1) drive the increase in SNA during compensated hemorrhage, and a reduction in C1 contributes to hypotension during decompensated hemorrhage. Using fiber photometry, we demonstrate that C1 activity increases during compensated hemorrhage and falls at the onset of decompensated hemorrhage.

View Article and Find Full Text PDF

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures.

View Article and Find Full Text PDF

Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH.

View Article and Find Full Text PDF

Arousal from sleep in response to CO is a life-preserving reflex that enhances ventilatory drive and facilitates behavioural adaptations to restore eupnoeic breathing. Recurrent activation of the CO -arousal reflex is associated with sleep disruption in obstructive sleep apnoea. In this review we examine the role of chemoreceptors in the carotid bodies, the retrotrapezoid nucleus and serotonergic neurons in the dorsal raphe in the CO -arousal reflex.

View Article and Find Full Text PDF

Collectively, the retrotrapezoid nucleus (RTN) and adjacent C1 neurons regulate breathing, circulation and the state of vigilance, but previous methods to manipulate the activity of these neurons have been insufficiently selective to parse out their relative roles. We hypothesize that RTN and C1 neurons regulate distinct aspects of breathing (e.g.

View Article and Find Full Text PDF

Neurogenic hypertension is associated with excessive sympathetic nerve activity to the kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause heightened sympathetic nerve activity in animal models of neurogenic hypertension, and we discuss the triggers responsible for the changes in neuronal activity within these regions. We highlight the limitations of the evidence and, whenever possible, we briefly address the pertinence of the findings to human hypertension.

View Article and Find Full Text PDF

The combination of hypoxia and hypercapnia during sleep produces arousal, which helps restore breathing and normalizes blood gases. Hypercapnia and hypoxia produce arousal in mammals by activating central (pH-sensitive) and peripheral (primarily O-sensitive) chemoreceptors. The relevant chemoreceptors and the neuronal circuits responsible for arousal are largely unknown.

View Article and Find Full Text PDF

The ventral surface of the rostral medulla oblongata has been suspected since the 1960s to harbor central respiratory chemoreceptors [i.e., acid-activated neurons that regulate breathing to maintain a constant arterial PCO (PaCO)].

View Article and Find Full Text PDF

Obstructive sleep apnea patients face episodes of chronic intermittent hypoxia (CIH), which has been suggested as a causative factor for increased sympathetic activity (SNA) and hypertension. Female rats exposed to CIH develop hypertension and exhibit changes in respiratory-sympathetic coupling, marked by an increase in the inspiratory modulation of SNA. We tested the hypothesis that enhanced inspiratory-modulation of SNA is dependent on carotid bodies (CBs) and are associated with changes in respiratory network activity.

View Article and Find Full Text PDF

The structure and function of crocodilian lungs are unique compared with those of other reptiles. We examined the extent to which this and the semi-aquatic lifestyle of crocodilians affect their respiratory mechanics. We measured changes in intratracheal pressure in adult and juvenile caiman () during static and dynamic lung volume changes.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? After sino-aortic denervation (SAD), rats present normal levels of mean arterial pressure (MAP), high MAP variability and changes in breathing. However, mechanisms involved in SAD-induced respiratory changes and their impact on the modulation of sympathetic activity remain unclear. Herein, we characterized the firing frequency of medullary respiratory neurons after SAD.

View Article and Find Full Text PDF

Key Points: The retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO2 but its role during various states of vigilance needs clarification. Under normoxia, RTN lesions increased the arterial PCO2 set-point, lowered the PO2 set-point and reduced alveolar ventilation relative to CO production. Tidal volume was reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep.

View Article and Find Full Text PDF

Purpose Of Review: Surgical removal of the baroreceptor afferents [sino-aortic denervation (SAD)] leads to a lack of inhibitory feedback to sympathetic outflow, which in turn is expected to result in a large increase in mean arterial pressure (MAP). However, few days after surgery, the sympathetic nerve activity (SNA) and MAP of SAD rats return to a range similar to that observed in control rats. In this review, we present experimental evidence suggesting that breathing contributes to control of SNA and MAP following SAD.

View Article and Find Full Text PDF

The retrotrapezoid nucleus (RTN) regulates breathing in a CO - and state-dependent manner. RTN neurons are glutamatergic and innervate principally the respiratory pattern generator; they regulate multiple aspects of breathing, including active expiration, and maintain breathing automaticity during non-REM sleep. RTN neurons encode arterial /pH via cell-autonomous and paracrine mechanisms, and via input from other CO -responsive neurons.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is a complex disease in which humans face episodes of intermittent hypoxia and it affects men and women. Patients with OSA present hypertension and sympathetic overactivity among several other dysfunctions. Therefore, one important question remains: are the autonomic dysfunctions associated with OSA similar in male and female? This is an unresolved question since sex factors are overlooked in most clinical and experimental studies.

View Article and Find Full Text PDF

What is the central question of this study? Sino-aortic denervated (SAD) rats present normal levels of sympathetic activity and mean arterial pressure. However, neural mechanisms regulating the sympathetic activity in the absence of arterial baroreceptors remain unclear. Considering that respiration modulates the sympathetic activity, we hypothesize that changes in the respiratory network contribute to keep the sympathetic outflow in the normal range after removal of arterial baroreceptors.

View Article and Find Full Text PDF