Publications by authors named "Glynnis Hood"

Beavers (Castor canadensis and C. fiber) build dams that modify catchment and pond water balances, and it has been suggested that they can be a nature-based solution for reducing flood hydrographs, enhancing low flow hydrographs and restoring hydrological functioning of degraded streams. How water moves through a beaver dam is determined by its flow state (e.

View Article and Find Full Text PDF

Beavers have been analyzed in several studies examining trace elements (TEs) in wildlife; however, most of these studies were undertaken in areas with known environmental pollutants. To understand and quantify natural enrichments of TEs in beaver tissue, samples of kidney, liver, muscle from 28 animals were compared with bark from 40 species of trees and shrubs, from the same, uncontaminated watershed. Pearson correlation and factor analysis show that conservative, lithophile elements such as Al, Ga, Th, and Y, all surrogates for mineral dust particles, explain 61% of the variation in the bark data.

View Article and Find Full Text PDF

Chalcophile (Ag, Cd, Co, Cu, Mo, Ni, Pb, Se, Tl, Zn) and lithophile (Al, Ba, Ce, Cr, Cs, Fe, La, Li, Mn, Nd, Rb, Sr, V, Y) trace elements (TEs) were determined in kidney, liver and muscle of beaver (Castor canadensis) from a rural watershed in southern Ontario, Canada. To estimate the relative bioavailability of TEs in the landscape, they were also determined in the dissolved (<0.45 μm) fraction of water from the river where the animals were harvested.

View Article and Find Full Text PDF