Endogenous cannabinoid signaling is vital for important brain functions, and the same pathways can be modified pharmacologically to treat pain, epilepsy, and posttraumatic stress disorder. Endocannabinoid-mediated changes to excitability are predominantly attributed to 2-arachidonoylglycerol (2-AG) acting presynaptically via the canonical cannabinoid receptor, CB1. Here, we identify a mechanism in the neocortex by which anandamide (AEA), another major endocannabinoid, but not 2-AG, powerfully inhibits somatically recorded voltage-gated sodium channel (VGSC) currents in the majority of neurons.
View Article and Find Full Text PDFVoltage-gated sodium channels (VGSCs) are strategically positioned to mediate neuronal plasticity because of their influence on action potential waveform. VGSC function may be strongly inhibited by local anesthetic and antiepileptic drugs and modestly modulated via second messenger pathways. Here, we report that the allosteric modulators of the calcium-sensing receptor (CaSR) cinacalcet, calindol, calhex, and NPS 2143 completely inhibit VGSC current in the vast majority of cultured mouse neocortical neurons.
View Article and Find Full Text PDF