Bovine milk α-casein, an intrinsically disordered protein, readily forms amyloid fibrils in vitro and is implicated in the formation of amyloid fibril deposits in mammary tissue. Its two cysteine residues participate in the formation of either intra- or intermolecular disulphide bonds, generating monomer and dimer species. X-ray solution scattering measurements indicated that both forms of the protein adopt large, spherical oligomers at 20 °C.
View Article and Find Full Text PDFThe supra-molecular self-assembly of peptides and proteins is a process which underlies a range of normal and aberrant biological pathways in nature, but one which remains challenging to monitor in a quantitative way. We discuss the experimental details of an approach to this problem which involves the direct measurement in vitro of mass changes of the aggregates as new molecules attach to them. The required mass sensitivity can be achieved by the use of a quartz crystal transducer-based microbalance.
View Article and Find Full Text PDFAn experimental determination of the thermodynamic stabilities of a series of amyloid fibrils reveals that this structural form is likely to be the most stable one that protein molecules can adopt even under physiological conditions. This result challenges the conventional assumption that functional forms of proteins correspond to the global minima in their free energy surfaces and suggests that living systems are conformationally as well as chemically metastable.
View Article and Find Full Text PDFThe self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture.
View Article and Find Full Text PDFThe function of ScHSP26 is thermally controlled: the heat shock that causes the destabilization of target proteins leads to its activation as a molecular chaperone. We investigate the structural and dynamical properties of ScHSP26 oligomers through a combination of multiangle light scattering, fluorescence spectroscopy, NMR spectroscopy, and mass spectrometry. We show that ScHSP26 exists as a heterogeneous oligomeric ensemble at room temperature.
View Article and Find Full Text PDFalphaB-Crystallin is a small heat-shock protein (sHsp) that is colocalized with alpha-synuclein (alphaSyn) in Lewy bodies-the pathological hallmarks of Parkinson's disease-and is an inhibitor of alphaSyn amyloid fibril formation in an ATP-independent manner in vitro. We have investigated the mechanism underlying the inhibitory action of sHsps, and here we establish, by means of a variety of biophysical techniques including immunogold labeling and nuclear magnetic resonance spectroscopy, that alphaB-crystallin interacts with alphaSyn, binding along the length of mature amyloid fibrils. By measurement of seeded fibril elongation kinetics, both in solution and on a surface using a quartz crystal microbalance, this binding is shown to strongly inhibit further growth of the fibrils.
View Article and Find Full Text PDFWe present an analytical treatment of a set of coupled kinetic equations that governs the self-assembly of filamentous molecular structures. Application to the case of protein aggregation demonstrates that the kinetics of amyloid growth can often be dominated by secondary rather than by primary nucleation events. Our results further reveal a range of general features of the growth kinetics of fragmenting filamentous structures, including the existence of generic scaling laws that provide mechanistic information in contexts ranging from in vitro amyloid growth to the in vivo development of mammalian prion diseases.
View Article and Find Full Text PDFSmall peptides offer an attractive starting point for the development of self-assembling materials for a variety of purposes, since they are relatively simple to produce and can be tailored to provide an expansive range of chemical functionality. We have employed a short peptide that spontaneously self-assembles into a multimolecular fibrillar architecture to drive the coassembly of two independent luminescent moieties. We use fluorescence spectroscopy to demonstrate that the resulting complex performs a light-harvesting function.
View Article and Find Full Text PDFThe protein beta-lactoglobulin aggregates into two apparently distinct forms under different conditions: amyloid fibrils at pH values away from the isoelectric point, and spherical aggregates near it. To understand this apparent dichotomy in behavior, we studied the internal structure of the spherical aggregates by employing a range of biophysical approaches. Fourier transform infrared studies show the aggregates have a high beta-sheet content that is distinct from the native beta-lactoglobulin structure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
A key issue in understanding the pathogenic conditions associated with the aberrant aggregation of misfolded proteins is the identification and characterization of species formed during the aggregation process. Probing the nature of such species has, however, proved to be extremely challenging to conventional techniques because of their transient and heterogeneous character. We describe here the application of a two-color single-molecule fluorescence technique to examine the assembly of oligomeric species formed during the aggregation of the SH3 domain of PI3 kinase.
View Article and Find Full Text PDFWe describe the formation of self-assembling nanoscale fibrillar aggregates from a hybrid system comprising a short polypeptide conjugated to the fluorophore fluorene. The fibrils are typically unbranched, approximately 7 nm in diameter, and many microns in length. A range of techniques are used to demonstrate that the spectroscopic nature of the fluorophore is significantly altered in the fibrillar environment.
View Article and Find Full Text PDFWe describe experiments designed to explore the possibility of using amyloid fibrils as new nanoscale biomaterials for promoting and exploiting cell adhesion, migration and differentiation in vitro. We created peptides that add the biological cell adhesion sequence (RGD) or a control sequence (RAD) to the C-terminus of an 11-residue peptide corresponding to residues 105-115 of the amyloidogenic protein transthyretin. These peptides readily self-assemble in aqueous solution to form amyloid fibrils, and X-ray fibre diffraction shows that they possess the same strand and sheet spacing in the characteristic cross-beta structure as do fibrils formed by the parent peptide.
View Article and Find Full Text PDFAggregation of proteins and peptides is a widespread and much-studied problem, with serious implications in contexts ranging from biotechnology to human disease. An understanding of the proliferation of such aggregates under specific conditions requires a quantitative knowledge of the kinetics and thermodynamics of their formation; measurements that to date have remained elusive. Here, we show that precise determination of the growth rates of ordered protein aggregates such as amyloid fibrils can be achieved through real-time monitoring, using a quartz crystal oscillator, of the changes in the numbers of molecules in the fibrils from variations in their masses.
View Article and Find Full Text PDFProtein aggregation is a problem with a multitude of consequences, ranging from affecting protein expression to its implication in many diseases. Of recent interest is the specific form of aggregation leading to the formation of amyloid fibrils, structures associated with diseases such as Alzheimer's disease. The ability to form amyloid fibrils is now regarded as a property generic to all polypeptide chains.
View Article and Find Full Text PDFWe have investigated the effect of sample hydration on the wide-angle X-ray scattering patterns of amyloid fibrils from two different sources, hen egg white lysozyme (HEWL) and an 11-residue peptide taken from the sequence of transthyretin (TTR105-115). Both samples show an inter-strand reflection at 4.7 A and an inter-sheet reflection which occurs at 8.
View Article and Find Full Text PDFAmyloid fibrils are typically rigid, unbranched structures with diameters of approximately 10 nm and lengths up to several micrometres, and are associated with more than 20 diseases including Alzheimer's disease and type II diabetes. Insulin is a small, predominantly alpha-helical protein consisting of 51 residues in two disulfide-linked polypeptide chains that readily assembles into amyloid fibrils under conditions of low pH and elevated temperature. We demonstrate here that both the A-chain and the B-chain of insulin are capable of forming amyloid fibrils in isolation under similar conditions, with fibrillar morphologies that differ from those composed of intact insulin.
View Article and Find Full Text PDFWe have developed a new database that collects all protein folding data into a single, easily accessible public resource. The Protein Folding Database (PFD) contains annotated structural, methodological, kinetic and thermodynamic data for more than 50 proteins, from 39 families. A user-friendly web interface has been developed that allows powerful searching, browsing and information retrieval, whilst providing links to other protein databases.
View Article and Find Full Text PDFFront Biosci
January 2005
The native fold of inhibitory serpins (serpin proteinase inhibitors) is metastable and therefore does not represent the most stable conformation that the primary sequence encodes for. The most stable form is adopted when the reactive centre loop (RCL) inserts, as the fourth strand, into the A b -sheet. Currently a serpin can adopt at least four more stable conformations, termed the cleaved, delta, latent and polymeric states.
View Article and Find Full Text PDFSmall heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that prevent the misfolding and aggregation of proteins. However, specific details about their substrate specificity and mechanism of chaperone action are lacking. alpha1-Antichymotrypsin (ACT) and alpha1-antitrypsin (alpha1-AT) are two closely related members of the serpin superfamily that aggregate through nucleation-dependent and nucleation-independent pathways, respectively.
View Article and Find Full Text PDFThe native serpin architecture is extremely sensitive to mutation and environmental factors. These factors induce the formation of a partially folded species that results in the production of inactive loop-sheet polymers. The deposition of these aggregates in tissue, results in diseases such as liver cirrhosis, thrombosis, angioedema and dementia.
View Article and Find Full Text PDF