NanoLuc, a superior β-barrel fold luciferase, was engineered 10 years ago but the nature of its catalysis remains puzzling. Here experimental and computational techniques are combined, revealing that imidazopyrazinone luciferins bind to an intra-barrel catalytic site but also to an allosteric site shaped on the enzyme surface. Structurally, binding to the allosteric site prevents simultaneous binding to the catalytic site, and vice versa, through concerted conformational changes.
View Article and Find Full Text PDFIn this work on the design and studies of luciferins related to the blue-hued coelenterazine, the synthesis of heterocyclic analogues susceptible to produce a photon, possibly at a different wavelength, is undertaken. Here, the synthesis of O-acetylated derivatives of imidazo[1,2-b]pyridazin-3(5 H)-one, imidazo[2,1-f][1,2,4]triazin-7(1 H)-one, imidazo[1,2-a]pyridin-3-ol, imidazo[1,2-a]quinoxalin-1(5 H)-one, benzo[f]imidazo[1,2-a]quinoxalin-3(11 H)-one, imidazo[1',2':1,6]pyrazino[2,3-c]quinolin-3(11 H)-one, and 5,11-dihydro-3 H-chromeno[4,3-e]imidazo[1,2-a]pyrazin-3-one is described thanks to extensive use of the Buchwald-Hartwig N-arylation reaction. The acidic hydrolysis of these derivatives then gave solutions of the corresponding luciferin analogues, which were studied.
View Article and Find Full Text PDFWe describe here an extensive structure-bioluminescence relationship study of a chemical library of analogues of coelenterazine, using nanoKAZ/NanoLuc, a mutated luciferase originated from the catalytic subunit of the deep-sea shrimp Oplophorus gracilirostris. Out of the 135 O-acetylated precursors that were prepared by using our recently reported synthesis and following their hydrolysis to give solutions of the corresponding luciferins, notable bioluminescence improvements were achieved in comparison with furimazine, which is currently amongst the best substrates of nanoKAZ/NanoLuc. For instance, the rather more lipophilic analogue 8-(2,3-difluorobenzyl)-2-((5-methylfuran-2-yl)methyl)-6-phenylimidazo[1,2-a]pyrazin-3(7H)-one provided a 1.
View Article and Find Full Text PDFAn original gram-scale synthesis of O-acetylated forms of coelenterazine, furimazine or hydroxy-bearing analogues of luciferins is described. The comparison over two hours of their bioluminescence, using the nanoKAZ/NanoLuc luciferase, provides remarkable insights useful for the selection of a substrate adapted for a given application.
View Article and Find Full Text PDFWe have explored here the scope of the age-old diethyl malonate-based accesses to α-amino esters involving Knoevenagel condensations of diethyl malonate on aldehydes, reductions of the resulting alkylidenemalonates, the preparation of the corresponding α-hydroxyimino esters and their final reduction. This synthetic pathway turned out to be general although some unexpected limitations were encountered. The synthetic modifications of some of the intermediates - using Suzuki-Miyaura coupling or cycloadditions - before undertaking the oximation step - provided accesses to further α-amino esters.
View Article and Find Full Text PDFWe report here on the use of ethyl nitroacetate as a glycine template to produce α-amino esters. This started with a study of its condensation with various arylacetals to give ethyl 3-aryl-2-nitroacrylates followed by a reduction (NaBH and then zinc/HCl) into α-amino esters. The scope of this method was explored as well as an alternative with arylacylals instead.
View Article and Find Full Text PDFPalladium-catalyzed carbothiolation of terminal alkynes with azolyl sulfides affords various 2-(azolyl)alkenyl sulfides with perfect regio- and stereoselectivities. The present addition reaction proceeded through a direct cleavage of carbon-sulfur bonds in azolyl sulfides. The resulting adducts that are useful intermediates in organic synthesis are further transformed to multisubstituted olefins containing azolyl moieties.
View Article and Find Full Text PDF