Background/aims: There are evidences that a decrease in the functional activity of pancreatic β-cells under type 2 diabetes conditions may be associated with their senescence, therefore, senotherapy may be a prospective strategy for the diabetes treatment.
Methods: The senotherapeutic potential of peroxiredoxin 6 (PRDX6) was studied in RIN-m5F pancreatic β-cells with streptozotocin-induced senescence by measuring markers, associated with senescence.
Results: Exposure to streptozotocin (STZ) resulted in the senescence of the β-cells.
Diabetes mellitus type 1 (T1D) and type 2 (T2D) develop due to dysfunction of the Langerhans islet β-cells in the pancreas, and this dysfunction is mediated by oxidative, endoplasmic reticulum (ER), and mitochondrial stresses. Although the two types of diabetes are significantly different, β-cell failure and death play a key role in the pathogenesis of both diseases, resulting in hyperglycemia due to a reduced ability to produce insulin. In T1D, β-cell apoptosis is the main event leading to hyperglycemia, while in T2D, insulin resistance results in an inability to meet insulin requirements.
View Article and Find Full Text PDFThe aim of this work was to study the effects of thymosin-1 alpha (Tα1) on the anti-inflammatory response of RAW 264.7 macrophages cultured in the presence of lipopolysaccharide (LPS) from the walls of gram-negative bacteria. As well, we evaluated production of pro-inflammatory cytokines and the activity of the NF-κB and SAPK/JNK signaling pathways.
View Article and Find Full Text PDFThe aim of the work was to study effects of peroxiredoxin 6 (PRDX6), a recombinant antioxidant protein, on the level of pro-inflammatory responses of RAW 264.7 macrophages to endotoxin exposure. Addition of LPS to the RAW 264.
View Article and Find Full Text PDFThis study aimed to assess the effects of the immunomodulator thymulin, a thymic peptide with anti-inflammatory effects, and peroxiredoxin 6 (Prdx6), an antioxidant enzyme with dual peroxidase and phospholipase A2 activities, on the blood‒brain barrier (BBB) condition and general health status of animals with relapsing-remitting experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis in humans. Both thymulin and Prdx6 significantly improved the condition of the BBB, which was impaired by EAE induction, as measured by Evans blue dye accumulation, tight-junction protein loss in brain tissue, and lymphocyte infiltration through the BBB. The effect was associated with significant amelioration of EAE symptoms.
View Article and Find Full Text PDFThis minireview discusses the very important biomedical problem of treating type 2 diabetes mellitus (T2D). T2D accounts for more than 90% of the total number of diagnosed cases of diabetes mellitus and can result from aging, inflammation, obesity and β-cell senescence. The main symptom of both T2D and type 1 diabetes (T1D) is an increase in blood glucose concentration.
View Article and Find Full Text PDFPeroxiredoxin 6 (Prdx6) is a multifunctional eukaryotic antioxidant enzyme. Mammalian Prdx6 possesses peroxidase activity against a wide range of organic and inorganic hydroperoxides, as well as exhibits phospholipase A2 (aiPLA2) activity, which plays an important role in the reduction of oxidized phospholipids and cell membrane remodeling. Exogenous Prdx6 has recently been shown to be able to penetrate inside the cell.
View Article and Find Full Text PDFThe aim of the study was to evaluate the possibility of increasing the radioprotective potential of peroxiredoxin 6 (Prdx6) and its mutant form S32A by their combined use with geldanamycin (GA) for 3T3 fibroblasts irradiated with X-rays at a dose of 6 Gy. The mutant enzyme S32A, which does not have phospholipase activity, exhibits a more pronounced radioprotective activity when combined with GA. The use of this combination of radioprotective drugs completely abolishes the peak of NF-κB activity in irradiated 3T3 cells.
View Article and Find Full Text PDFPeroxiredoxin 6 (Prdx6) is an important antioxidant enzyme with multiple functions in the cell. Prdx6 neutralizes a wide range of hydroperoxides, participates in phospholipid metabolism and cell membrane repair, and in transmission of intracellular and intercellular signals. Disruption of normal Prdx6 expression in the cell leads to the development of pathological conditions.
View Article and Find Full Text PDFPathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis.
View Article and Find Full Text PDFAlthough many different classes of antioxidants have been evaluated as radioprotectors, none of them are in widespread clinical use because of their low efficiency. The goal of our study was to evaluate the potential of the antioxidant protein peroxiredoxin 6 (Prdx6) to increase the radioresistance of 3T3 fibroblasts when Prdx6 was applied after exposure to 6 Gy X-ray. In the present study, we analyzed the mRNA expression profiles of genes associated with proliferation, apoptosis, cellular stress, senescence, and the production of corresponding proteins from biological samples after exposure of 3T3 cells to X-ray radiation and application of Prdx6.
View Article and Find Full Text PDFProtective effects of peroxiredoxin 6 (PRDX6) in RIN-m5F β-cells and of thymulin in mice with alloxan-induced diabetes were recently reported. The present work was aimed at studying the efficiency of thymulin and PRDX6 in a type 1 diabetes mellitus model induced by streptozotocin in mice. Effects of prolonged treatment with PRDX6 or thymic peptide thymulin on diabetes development were evaluated.
View Article and Find Full Text PDFPeroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown.
View Article and Find Full Text PDFType 1 diabetes is associated with the destruction of pancreatic beta cells, which is mediated via an autoimmune mechanism and consequent inflammatory processes. In this article, we describe a beneficial effect of peroxiredoxin 6 (PRDX6) in a type 1 diabetes mouse model. The main idea of this study was based on the well-known data that oxidative stress plays an important role in pathogenesis of diabetes and its associated complications.
View Article and Find Full Text PDFThe role of two heat shock proteins, Hsp70 and Hsp90α, on stress response in mice with severe diabetes mellitus induced by a high dose of alloxan (500 mg/kg body weight), as well as in RIN-m5F β cells cultured in the presence of cytokines (IL-1 and TNF-α) was studied. Our results showed that severe type 1 diabetes mellitus (T1D) caused a higher expression of Hsp90α, but not Hsp70. Moreover, injections of the peroxiredoxin 6 antioxidant enzyme (PRDX6) did not affect the expression of these chaperones.
View Article and Find Full Text PDFIntroduction: A large volume of data indicates that the known thymic hormones, thymulin, thymopoietin, thymosin-α, thymosin-β, and thymic humoral factor-y2, exhibit different spectra of activities. Although large in volume, available data are rather fragmented, resulting in a lack of understanding of the role played by thymic hormones in immune homeostasis.
Area Covered: Existing data compartmentalizes the effect of thymic peptides into 2 categories: influence on immune cells and interconnection with neuroendocrine systems.
Relapsing-remitting experimental autoimmune encephalomyelitis (rEAE) in mice is a model that closely resembles relapsing-remitting multiple sclerosis in humans. This study aims to investigate a new approach to modulation of the inflammatory response in rEAE mice using a thymic peptide thymulin bound to polybutylcyanoacrylate (PBCA) nanoparticles. PBCA nanoparticles were used to prolong the presence of thymulin in the blood.
View Article and Find Full Text PDFTaking into account a special role of pancreatic β-cells in the development of diabetes mellitus, the effects of peroxiredoxin 6 (Prx6) on the viability and functional activity of rat insulinoma RIN-m5F β-cells were studied under diabetes-simulating conditions. For this purpose, the cells were cultured at elevated glucose concentrations or in the presence of pro-inflammatory cytokines (TNF-α and IL-1) known for their special role in the cytotoxic autoimmune response in diabetes. It was found that the increased glucose concentration of 23-43 mM caused death of 20-60% β-cells.
View Article and Find Full Text PDFAims: To initiate a state of artificial torpor we suggested a pharmacological multi-targeting strategy for simulation of the physiological pattern of natural hibernation including a significant reduction in heart rate, respiratory rate, body temperature and oxygen consumption as well as a decline in brain activity known as torpor.
Materials And Methods: We have developed a composition which initiates a pharmacologically induced torpor-like state (PITS-composition), made up of eight therapeutic agents, inert gas xenon and lipid emulsion served as a drug vehicle.
Key Findings: After a single intravenous injection to rats, PITS-composition causes a rapid decline in heart rate followed by a steady decrease in body temperature from about 38.
Characteristics of the mouse model of relapsing-remitting experimental autoimmune encephalomyelitis (rEAE) closely resemble manifestations of multiple sclerosis in humans. In the present study, we investigated the mechanisms of inflammatory response, focusing on NF-κB pathway activation. Cytokine response in rEAE mice was multiphasic: the early phase was characterized by the increase in interferon-γ level in plasma.
View Article and Find Full Text PDFWe investigated the effects of weak combined magnetic fields (MFs) produced by superimposing a constant MF (in the range 30 - 150 µT) and an alternating MF (100 or 200 nT) on cytokine production in healthy Balb/C male mice exposed 2 h daily for 14 days. The alternating magnetic field was a sum of several frequencies (ranging from 2.5 - 17.
View Article and Find Full Text PDFThe role of protein kinases p38 and CK2 (casein kinase II) in the response of RAW 264.7 macrophages to the lipopolysaccharide (LPS) from gram-negative bacteria was studied. Using specific p38 and CK2 inhibitors (p38 MAP kinase Inhibitor XI and casein kinase II Inhibitor III, respectively), we investigated the effects of these protein kinases on (i) LPS-induced activation of signaling pathways involving nuclear factor κB (NF-κB), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and interferon regulatory factor 3 (IRF3); (ii) expression of Toll-like receptor 4 (TLR4) and inducible heat-shock proteins HSP72 and HSP90; and (iii) production of interleukins IL-1α, IL-1β, IL-6, tumor necrosis factor α, and IL-10.
View Article and Find Full Text PDFIn this study, we examined the effects of uridine on plasma cytokine levels, heat shock protein (HSP) 72 expression, and nuclear factor (NF)-κB signaling in spleen lymphocytes after exposure of male BALB/c mice to Escherichia coli lipopolysaccharide (LPS). Mice were treated with uridine (30 mg/kg body weight, intraperitoneal injection [i.p.
View Article and Find Full Text PDFIn the present work, we aimed to study the effects of free and polybutylcyanoacrylate nanoparticle-bound thymulin on immune cell activity in mice with chronic inflammation. NF-κB, MAPK, and PKC-θ signaling pathway activity was assessed, alongside Hsp72, Hsp90-α, and TLR4 expression and levels of apoptosis. In addition, plasma cytokines and blood and brain melatonin and serotonin levels were measured.
View Article and Find Full Text PDF