Publications by authors named "Gloria Y Lee"

Vitrification of mammalian oocytes and embryos is typically a two-step procedure involving two solutions of increasing concentrations of cryoprotectants. In the present study, we report a simple vitrification protocol that uses low cryoprotectant concentration and a single medium (LCSM). This medium, along with the traditional high concentration two media (HCTM) protocol, was used to vitrify mouse oocytes, zygotes, and blastocysts using silica capillary, cryotop, cryolock, and 0.

View Article and Find Full Text PDF

Human infertility can be treated using assisted reproductive technology (ART) such as intracytoplasmic sperm injection (ICSI). But current ART techniques suffer from multiple cumbersome processes requiring technically skilled personnel. Microfluidics technologies offer unique opportunities to streamline ART procedures, reduce stress imposed upon gametes and embryos, and minimize the operator-to-operator variability.

View Article and Find Full Text PDF

Cryopreservation of human spermatozoa is a commonly used technique in assisted reproduction, however freezing low concentrations of sperm while maintaining adequate post-thaw motility remains a challenge. In an effort to optimize post-thaw motility yields, low volumes of human sperm were frozen in polyimide-coated fused silica micro-capillaries using 0.065 M, 0.

View Article and Find Full Text PDF

The purpose of this study is to develop a mouse sperm preservation method based on evaporative drying. Mouse sperm were evaporatively dried and stored at 4°C and ambient temperature for 3 months to 2 years. Upon rehydration, a single sperm was injected into a mature oocyte to develop into a blastocyst after culture or a live birth after embryo transfer to a recipient female.

View Article and Find Full Text PDF

The prevalence of genetically engineered mice in medical research has led to ever increasing storage costs. Trehalose has a significant beneficial effect in preserving the developmental potential of mouse sperm following partial desiccation and storage at temperatures above freezing. Using multi-isotope imaging mass spectrometry, we are able to image and measure trehalose in individual spermatozoa.

View Article and Find Full Text PDF

With the fast advancement in the genetics and bio-medical fields, the vast number of valuable transgenic and rare genetic mouse models need to be preserved. Preservation of mouse sperm by convective drying and subsequent storing at above freezing temperatures could dramatically reduce the cost and facilitate shipping. Mouse sperm were convectively dried under nitrogen gas in the Na-EGTA solution containing 100 mmol/L 3-O-methyl-D-glucose and stored in LiCl sorption jars (Relative Humidity, RH, 12%) at 4°C and 22°C for up to one year.

View Article and Find Full Text PDF

It has been shown in the past that mouse spermatozoa could be dried under a stream of nitrogen gas at ambient temperature and stored at 4 degrees C or 22 degrees C for up to 3 months and was capable of generating live-born offspring. In previous desiccation work, dried sperm were stored in a vacuum-sealed plastic bag placed in a vacuum-packed Mylar bag. However, dried specimens stored in this way often lost moisture, particularly in samples stored at higher temperatures (22 degrees C) compared to lower temperatures (4 degrees C).

View Article and Find Full Text PDF

To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis II (M-II) in IVO oocytes were compact, displayed focused spindle poles with distinct gamma-tubulin foci, and were composed of acetylated microtubules.

View Article and Find Full Text PDF