We asked whether retinoic acid (RA), an established transcriptional regulator in regenerating and developing tissues, acts directly on distinct cell classes in the mature or embryonic forebrain. We identified a subset of slowly dividing precursors in the adult subventricular zone (SVZ) that is transcriptionally activated by RA. Most of these cells express glial fibrillary acidic protein, a smaller subset expresses the epidermal growth factor receptor, a few are terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling positive, and they can be mitotically labeled by sustained rather than acute bromodeoxyuridine exposure.
View Article and Find Full Text PDFWe used transgenic reporter mice to determine whether brain regions that respond to retinoic acid (RA) during development do so in maturity. We focused on two prominent sites of embryonic RA signaling: the dorsal spinal cord and the olfactory bulb. In the mature dorsal spinal cord, expression of a direct repeat 5 RA response element (DR5-RARE) transgene is seen in interneurons in laminae I and II, as well as in ependymal cells around the central canal.
View Article and Find Full Text PDF