Nickel oxide-based thin films and nanomaterials are a current focus of intense research efforts due to the broad range of end uses in a variety of applications. While the chemico-physical properties of bulk NiO crystals, characterized by a wide band gap (4.0-4.
View Article and Find Full Text PDFNiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MS) and theoretical calculations.
View Article and Find Full Text PDFMagnetic iron oxide nanoparticles (IONPs) have gained momentum in the field of biomedical applications. They can be remotely heated via alternating magnetic fields, and such heat can be transferred from the IONPs to the local environment. However, the microscopic mechanism of heat transfer is still debated.
View Article and Find Full Text PDFNiO-based films and nanostructured materials have received increasing attention for a variety of technological applications. Among the possible strategies for their fabrication, atomic layer deposition (ALD) and chemical vapor deposition (CVD), featuring manifold advantages of technological interest, represent appealing molecule-to-material routes for which a rational precursor design is a critical step. In this context, the present study is focused on the coordination sphere engineering of three heteroleptic Ni(II) β-diketonate-diamine adducts of general formula [NiLTMEDA] [L = 1,1,1-trifluoro-2,4-pentanedionate (tfa), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionate (fod) or 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), and TMEDA = ,,','-tetramethylethylenediamine].
View Article and Find Full Text PDFCo3O4 thin films and nanosystems are implemented in a broad range of functional systems, including gas sensors, (photo)catalysts, and electrochemical devices for energy applications. In this regard, chemical vapor deposition (CVD) is a promising route for the fabrication of high-quality films in which the precursor choice plays a key role in the process development. In this work, a heteroleptic cobalt complex bearing fluorinated diketonate ligands along with a diamine moiety [Co(tfa)2·TMEDA; tfa = 1,1,1-trifluoro-2,4-pentanedionate and TMEDA = N,N,N',N'-tetramethylethylenediamine] is investigated as a potential Co molecular precursor for the CVD of Co3O4 systems.
View Article and Find Full Text PDFTransition metal complexes with β-diketonate and diamine ligands are valuable precursors for chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not yet clarified in detail. We address this question by density functional theory (DFT) and ab initio molecular dynamics (AIMD) in combination with the Blue Moon (BM) statistical sampling approach. AIMD simulations of the Zn β-diketonate-diamine complex Zn(hfa)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = ,,,-tetramethylethylenediamine), an amenable precursor for the CVD of ZnO nanosystems, show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry.
View Article and Find Full Text PDFThe mechanical interlocking of molecular components can lead to the appearance of novel and unconventional properties and processes, with potential relevance for applications in nanoscience, sensing, catalysis, and materials science. We describe a [3]rotaxane in which the number of recognition sites available on the axle component can be changed by acid-base inputs, encompassing cases in which this number is larger, equal to, or smaller than the number of interlocked macrocycles. These species exhibit very different properties and give rise to a unique network of acid-base reactions that leads to a fine p tuning of chemically equivalent acidic sites.
View Article and Find Full Text PDFOctyl methoxycinnamate (2-ethylhexyl 4-methoxycinnamate, OMC) is a commercial sunscreen known as octinoxate with excellent UVB filter properties. However, it is known to undergo a series of photodegradation processes that decrease its effectiveness as a UVB filter. In particular, the trans (E) form-which is considered so far as the most stable isomer-converts to the cis (Z) form under the effect of light.
View Article and Find Full Text PDFCP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems.
View Article and Find Full Text PDFThe general principles guiding the design of molecular machines based on interlocked structures are well known. Nonetheless, the identification of suitable molecular components for a precise tuning of the energetic parameters that determine the mechanical link is still challenging. Indeed, what are the reasons of the "all-or-nothing" effect, which turns a molecular "speed-bump" into a stopper in pseudorotaxane-based architectures? Here we investigate the threading and dethreading processes for a representative class of molecular components, based on symmetric dibenzylammonium axles and dibenzo[24]crown-8 ether, with a joint experimental-computational strategy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2019
Carboxylic-acid adsorption on anatase TiO is a relevant process in many technological applications. Yet, despite several decades of investigations, the acid-proton localization-either on the molecule or on the surface-is still an open issue. By modeling the adsorption of formic acid on top of anatase(101) surfaces, we highlight the formation of a short strong hydrogen bond.
View Article and Find Full Text PDFThe efficient detection of chemical warfare agents (CWAs), putting at stake human life and global safety, is of paramount importance in the development of reliable sensing devices for safety applications. Herein, we present the fabrication of MnO-based nanocomposites containing noble metal particles for the gas-phase detection of a simulant of vesicant nitrogen mustard, i.e.
View Article and Find Full Text PDFIncorporation of biological systems in water nanodroplets has recently emerged as a new frontier to investigate structural changes of biomolecules, with perspective applications in ultra-fast drug delivery. We report on the molecular dynamics of the digestive protein Pepsin subjected to a double confinement. The double confinement stemmed from embedding the protein inside a water nanodroplet, which in turn was caged in a nanochannel mimicking the mesoporous silica SBA-15.
View Article and Find Full Text PDFEmpty spaces are abhorred by nature, which immediately rushes in to fill the void. Humans have learnt pretty well how to make ordered empty nanocontainers, and to get useful products out of them. When such an order is imparted to molecules, new properties may appear, often yielding advanced applications.
View Article and Find Full Text PDFMolecular engineering of manganese(II) diamine diketonate precursors is a key issue for their use in the vapor deposition of manganese oxide materials. Herein, two closely related β-diketonate diamine Mn adducts with different fluorine contents in the diketonate ligands are examined. The target compounds were synthesized by a simple procedure and, for the first time, thoroughly characterized by a joint experimental-theoretical approach, to understand the influence of the ligand on their structures, electronic properties, thermal behavior, and reactivity.
View Article and Find Full Text PDFTurning disorder into organization is a key issue in science. By making use of X-ray powder diffraction and modeling studies, we show herein that high pressures in combination with the shape and space constraints of the hydrophobic all-silica zeolite ferrierite separate an ethanol-water liquid mixture into ethanol dimer wires and water tetramer squares. The confined supramolecular blocks alternate in a binary two-dimensional (2D) architecture that remains stable upon complete pressure release.
View Article and Find Full Text PDFConfined supramolecular architectures of chromophores are key components in artificial antenna composites for solar energy harvesting and storage. A typical fabrication process, based on the insertion of dye molecules into zeolite channels, is still unknown at the molecular level. We show that slipping of perylene diimide dyes into the one-dimensional channels of zeolite L and travelling inside is only possible because of steric-interaction-induced cooperative vibrational modes of the host and the guest.
View Article and Find Full Text PDFAtomic-scale relationships between the structure of TiO2 surfaces and the physicochemical properties of surface sites, functional for titania-based applications, can be obtained from IR spectroscopy by using carbon monoxide (CO) as a molecular probe. In the literature, it is reported that strongly unsaturated cationic Ti sites (Lewis acid), which are important for reactivity, should cause a large upshift of the CO stretching frequency. By using IR spectroscopy of CO on TiO2 nanomaterials and theoretical analyses, here this model is challenged.
View Article and Find Full Text PDFPseudorotaxanes formed by a dibenzo[24]crown-8 ring (R) and a dialkylammonium axle bearing either two E- or two Z-azobenzene units (EE-A or ZZ-A) revealed useful for the construction of light-powered molecular machines and motors, as they provide the opportunity of photocontrolling self-assembly/disassembly processes. The potential energies profiles for the dethreading of these complexes have been investigated by adopting a combination of first-principles molecular dynamics, metadynamics and quantum-chemical geometry optimization approaches. While the dethreading of the EE-A axle is associated with a monotonic energy increase, for that of the ZZ-A axle a transition state and an intermediate structure, in which the components are still threaded together, are found.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2015
Multifunctional hybrid materials are obtained by modifying zeolite L (ZL) with stopcock molecules, consisting of a tail group that can enter the ZL nanochannels and a head group too large to pass the channel opening. However, to date no microscopic-level structural information on modified ZL materials has been reported. Herein we draw atomistic pictures of channel openings and stopcock-functionalized ZL based on first-principles calculations.
View Article and Find Full Text PDFIntegrated studies of CO adsorption on TiO2 materials of different morphology and surface complexity identify, for the first time, frustrated translational CO modes by detecting their combination with the CO stretching mode (νCO). All the considered materials exhibit IR spectra with low-intensity bands in the 2235-2205 cm(-1) range, a region where components due to strong Lewis acid Ti(4+) sites may be present as well. These observations lead to a powerful method for associating high-wavenumber bands to TiO2 surface features and interpreting IR spectra of drastically complex/defective TiO2 materials.
View Article and Find Full Text PDFA combined experimental and modeling study of methylacridine (MeAcr(+)) dye-zeolite L composites unravels the microscopic origin of their functional properties. The anisotropic orientation of the cationic dye inside the ZL channel is unambiguously determined and understood. The most stable orientation of MeAcr(+), which features both its long and short molecular axes nearly perpendicular to the channel axis, is mainly determined by dye-ZL electrostatic interactions but also depends on the cosolvent water.
View Article and Find Full Text PDFIntegrated studies of CO on truncated bipyramidal TiO(2) anatase nanoparticles mainly exposing smooth (101) surfaces provide the missing link between TiO(2) single crystals and commercial TiO(2) nanopowders with complex morphology. The synergy among high resolution transmission electron microscopy, IR spectroscopy and modeling correlates adsorbed CO stretching frequency to anatase surface types, and reveals how disorder of the adsorbed CO layer affects CO/TiO(2) IR bands. Comparison of the two TiO(2) nanoparticle types highlights the role of low coordination Ti(4+) sites selectively present on TiO(2) P25 in the photocatalytic decomposition of H(2)O(2), an important Reactive Oxygen Species (ROS) formed in photocatalytic processes.
View Article and Find Full Text PDFThe absorption spectrum of fluorenone in zeolite L is calculated from first-principles simulations. The broadening of each band is obtained from the explicit treatment of the interactions between the chromophore and its environment in the statistical ensemble. The comparison between the simulated and measured spectra reveals the main factors affecting the spectrum of the chromophore in hydrated zeolite L.
View Article and Find Full Text PDFWe present the results of modelling studies aimed at the understanding of the interaction of a 7 nm sized water droplet containing a negatively charged globular protein with flat silica surfaces. We show how the droplet interaction with the surface depends on the electrostatic surface charge, and that adhesion of the droplet occurs when the surface is negatively charged as well. The key role of water and of the charge-balancing counter ions in mediating the surface-protein adhesion is highlighted.
View Article and Find Full Text PDF