Brachypodium distachyon has a full set of exoglycosidases active on xyloglucan, including α-xylosidase, β-galactosidase, soluble and membrane-bound β-glucosidases and two α-fucosidases. However, unlike in Arabidopsis, both fucosidases are likely cytosolic. Xyloglucan is present in primary walls of all angiosperms.
View Article and Find Full Text PDFXyloglucan is one of the main components of the primary cell wall in most species of plants. This protocol describes a method to analyze the composition of the enzyme-accessible and enzyme-inaccessible fractions of xyloglucan in the model species . It is based on digestion with an endoglucanase that attacks unsubstituted glucose residues in the backbone.
View Article and Find Full Text PDFIn many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3.
View Article and Find Full Text PDFIn several dicotyledonous species, NAC transcription factors act as master switches capable of turning on programmes of secondary cell-wall synthesis and cell death. This work used an oestradiol-inducible system to overexpress the NAC transcription factor BdSWN5 in the monocot model Brachypodium distachyon. This resulted in ectopic secondary cell-wall formation in both roots and shoots.
View Article and Find Full Text PDFIn growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. In Arabidopsis (Arabidopsis thaliana), a significant proportion of xyloglucan side chains contain β-galactose linked to α-xylose at O2. In this work, we identified AtBGAL10 (At5g63810) as the gene responsible for the majority of β-galactosidase activity against xyloglucan.
View Article and Find Full Text PDFUnderstanding peroxidase function in plants is difficult because of the lack of substrate specificity, the high number of genes and their diversity in structure. In the present study, the relative expression of 22 genes coding putative peroxidases (E.C 1.
View Article and Find Full Text PDFXyloglucan is the main hemicellulose in the primary cell walls of most seed plants and is thought to play a role in regulating the separation of cellulose microfibrils during growth. Xylose side chains block the degradation of the backbone, and α-xylosidase activity is necessary to remove them. Two Arabidopsis (Arabidopsis thaliana) mutant lines with insertions in the α-xylosidase gene AtXYL1 were characterized in this work.
View Article and Find Full Text PDFAll four glycanases necessary for the degradation of xyloglucan oligosaccharides (alpha-fucosidase, alpha-xylosidase, beta-galactosidase and beta-glucosidase) were found in the apoplastic fluid of Arabidopsis thaliana. These activities acted cooperatively on xyloglucan oligosaccharides (XLFG), leading to the sequential formation of XXFG, XXLG, XXXG, GXXG and XXG, as identified by matrix-assisted laser desorption ionization time of flight (MALDI-TOF). AtFXG1 (At1g67830) and AtXYL1 (At1g68560) had been previously identified as the Arabidopsis genes coding for alpha-fucosidase and alpha-xylosidase, respectively.
View Article and Find Full Text PDFThe growth cessation of plant axis has been related with the formation of diphenyl bridges among the pectic components of the cell wall caused by the action of apoplastic peroxidases using hydrogen peroxide as electron acceptor. The formation of diphenyl bridges is prevented by the presence of ascorbate in the apoplastic fluid which acts as a hydrogen peroxide scavenger. The current work focuses on the role of the apoplastic ascorbate and hydrogen peroxide in the cell growth.
View Article and Find Full Text PDFA complete cDNA from Pinus pinaster Aiton, potentially coding for an alpha-xylosidase able to remove the xylose residue from xyloglucan oligosaccharides, has been cloned. Its sequence was homologous to previously published alpha-xylosidase genes from Arabidopsis and nasturtium. The protein also showed the two signature regions of family 31 of glycosyl hydrolases.
View Article and Find Full Text PDF