Publications by authors named "Gloria R Braz"

Studies on the transcriptional control of gene expression are crucial to understand changes in organism's physiological or cellular conditions. To obtain reliable data on mRNA amounts and the estimation of gene expression levels, it is crucial to normalize the target gene with one or more internal reference gene(s). However, the use of constitutive genes as reference genes is controversial, as their expression patterns are sometimes more complex than previously thought.

View Article and Find Full Text PDF

Background: Arthropod-borne diseases are some of the most rapidly spreading diseases. Reducing the vector population is currently the only effective way to reduce case numbers. Central metabolic pathways are potential targets to control vector populations, but have not been well explored to this aim.

View Article and Find Full Text PDF

In dipteran insects, invading pathogens are selectively recognized by four major pathways, namely Toll, IMD, JNK, and JAK/STAT, and trigger the activation of several immune effectors. Although substantial advances have been made in understanding the immunity of model insects such as Drosophila melanogaster, knowledge on the activation of immune responses in other arthropods such as ticks remains limited. Herein, we have deepened our understanding of the intracellular signalling pathways likely to be involved in tick immunity by combining a large-scale in silico approach with high-throughput gene expression analysis.

View Article and Find Full Text PDF

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect.

View Article and Find Full Text PDF

The selenium-dependent glutathione peroxidase (SeGPx) is a well-studied enzyme that detoxifies organic and hydrogen peroxides and provides cells or extracellular fluids with a key antioxidant function. The presence of a SeGPx has not been unequivocally demonstrated in insects. In the present work, we identified the gene and studied the function of a Rhodnius prolixus SeGPx (RpSeGPx).

View Article and Find Full Text PDF

Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causative agent of Chagas' disease, an illness that affects 20% of Latin America population. The obligatory course of the parasite in the vector digestive tract has made it an important target for investigation in order to control the parasite transmission and thus interrupt its biological cycle in the insect vector. Therefore, an insight into the vector midgut physiology is valuable for insect control as well as to provide potential novel targets for drugs and vaccines development and thus disease treatment.

View Article and Find Full Text PDF

RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT)/Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development.

View Article and Find Full Text PDF

The triatomine insect, Rhodnius prolixus, is a vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. The parasite must overcome immune response and microbiota to develop inside the midgut of triatomines. In this study, we expressed, purified and characterized a Kazal-type inhibitor from the midgut of R.

View Article and Find Full Text PDF

Serine protease inhibitors (serpins) are a diverse family of proteins that is conserved across taxa. The diversity of Amblyomma americanum serpins (AAS) is far more complex than previously thought as revealed by discovery of 57 and 33 AAS transcripts that are respectively expressed in male and female A. americanum ticks, with 30 found in both.

View Article and Find Full Text PDF

Rhipicephalus microplus is an obligate hematophagous ectoparasite of cattle and an important biological vector of Anaplasma marginale in tropical and subtropical regions. The primary determinants for A. marginale transmission are infection of the tick gut, followed by infection of salivary glands.

View Article and Find Full Text PDF

The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology.

View Article and Find Full Text PDF

In insects, eggshell hardening involves cross-linking of chorion proteins via their tyrosine residues. This process is catalyzed by peroxidases at the expense of H2O2 and confers physical and biological protection to the developing embryo. Here, working with Rhodnius prolixus, the insect vector of Chagas disease, we show that an ovary dual oxidase (Duox), a NADPH oxidase, is the source of the H2O2 that supports dityrosine-mediated protein cross-linking and eggshell hardening.

View Article and Find Full Text PDF
Article Synopsis
  • CDKs are crucial for cell cycle progression and have been identified in Rhipicephalus microplus, the southern cattle tick, through analysis of a transcriptome database.
  • Both CDK1 and CDK10 from this tick species possess caspase-3/7 cleavage motifs, which are essential for their function, although they differ in motif position and protein length.
  • Inhibition assays with Roscovitine showed that it decreases cell viability in the R. microplus BME26 cell line, indicating that CDKs could be promising targets for developing new treatments against tick infestations.
View Article and Find Full Text PDF

Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease.

View Article and Find Full Text PDF

The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced.

View Article and Find Full Text PDF

Background: Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood.

View Article and Find Full Text PDF

Acyl-CoA esters have many intracellular functions, acting as energy source, substrate for metabolic processes and taking part in cell signaling. The acyl-CoA-binding protein (ACBP), a highly conserved 10 kDa intracellular protein, binds long- and medium-chain acyl-CoA esters with very high affinity, directing them to specific metabolic routes and protecting them from hydrolysis. An ACBP gene sequence was identified in the genome of Rhodnius prolixus.

View Article and Find Full Text PDF

We adapted the Seliwanoff method to quantify fructose in mosquitoes. This method showed a minimum detection limit of 2.4 microg of fructose, and was more reliable and nearly four times more sensitive than the anthrone test.

View Article and Find Full Text PDF

A blood-sucking habit appeared independently several times in the course of arthropod evolution. However, from more than a million species of insects and arachnids presently living on earth, only about 14,000 species developed the capacity to feed on vertebrate blood. This figure suggests the existence of severe physiological constraints for the evolution of hematophagy, implying the selective advantage of special adaptations related to the use of blood as a food source.

View Article and Find Full Text PDF

We have previously shown that Rhodnius prolixus' eggs and hemolymph are pink due to the presence of the hemeprotein Rhodnius heme-binding protein (RHBP). In the hemolymph it functions as an antioxidant. Nevertheless, its function in eggs has not been determined.

View Article and Find Full Text PDF