Objective: Facial skin undergoes major structural and functional changes as a result of intrinsic and extrinsic factors. The goal of the current work is to demonstrate L-4-thiazolylalaine (L4, Protinol), a non-proteinogenic amino acid shown to stimulate the production of dermal proteins by fibroblasts, is an alternative efficacious topical ingredient for visible signs of ageing.
Methods: In vitro studies using 3D human skin tissue models were performed to show changes in protein and gene expression of key dermal markers in samples treated with 0.
Articular cartilage has a limited capacity to heal after damage from injury or degenerative disease. Tissue engineering constructs that more closely mimic the native cartilage microenvironment can be utilized to promote repair. Glycosaminoglycans (GAGs), a major component of the cartilage extracellular matrix, have the ability to sequester growth factors due to their level and spatial distribution of sulfate groups.
View Article and Find Full Text PDFElectrospinning is a widely used processing method to form fibrous tissue engineering scaffolds that mimic the structural features of the native extracellular matrix. Electrospun fibers made of collagen have been sought because it is a natural structural protein that supports cell attachment and growth. Yet, conventional solvents used to electrospin collagen can result in the loss of hydrolytic stability and fiber morphology of the scaffold.
View Article and Find Full Text PDF