Publications by authors named "Gloria Miller"

Grand Bay National Estuarine Research Reserve (GBNERR) is an important ecosystem in the Mississippi Gulf Coast. The GBNERR may be a potential source for contamination with anthropogenic bacterial pathogens that may play a significant role in the causation of waterborne human diseases. The objective of this study was to evaluate the interaction of physicochemical and microbiological water quality parameters at the GBNERR, determine quantitative levels and establish the potential for remediation of post-contamination of water and seafood by human fecal pollution from anthropogenic sources at the reserve.

View Article and Find Full Text PDF

Grand Bay National Estuarine Research Reserve (GBNERR) is an important ecosystem in the Mississippi Gulf Coast. The GBNERR may be a potential source for contamination with anthropogenic bacterial pathogens that may play a significant role in the causation of waterborne human diseases. The objective of this study was to evaluate the interaction of physicochemical and microbiological water quality parameters at the GBNERR, determine quantitative levels and establish the potential for remediation of post-contamination of water and seafood by human fecal pollution from anthropogenic sources at the reserve.

View Article and Find Full Text PDF

This article presents a community-based approach that targets family interventions and services through a preventive, family systems ecological framework. A public health approach is used to emphasize the need for a tiered model of family support that builds on the strengths of refugee families while recognizing their specific needs and challenges. The rationale for a family systems ecological perspective is presented to highlight the critical features of effective family support programs for refugee families, followed by a discussion regarding the transitions and adaptation faced by refugee families when entering the United States.

View Article and Find Full Text PDF

Remediation of lead-contaminated soil is significant due to the inherent toxicity of lead (Pb), and the quantity of Pb discharged into the soil. One of the most cost-effective and environmentally sound technologies for the cleanup of metal-contaminated soils is through the use of plants. While much is known about the ecological evolution of metal tolerance in plants, the physiological, biochemical, and genetic mechanisms of tolerance is not well understood in the majority of resistant ecotypes such as the legume, Sesbania exaltata Raf.

View Article and Find Full Text PDF

Lead (Pb) is recognized as one of the most pervasive environmental health concerns in the industrialized world. While there has been a substantial reduction in the use of Pb in gasoline, water pipes, and Pb-based residential paint, residual Pb from their use is still in the environment and constitutes an important source of Pb in the atmosphere, water, and soil. Soil acts as a sink for these anthropogenic sources of Pb, accumulating the deposits over time in the upper 2 - 5 cm of undisturbed soil.

View Article and Find Full Text PDF

Lead (Pb), depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants.

View Article and Find Full Text PDF