Organic two-dimensional nanomaterials are of growing importance, yet few general synthetic methods exist to produce them in high yields and to precisely functionalize them. We previously developed an efficient hierarchical supramolecular assembly route to peptoid bilayer nanosheets, where the organization of biomimetic polymer sequences is catalyzed by an air-water interface. Here we determine at which stages of assembly the nanoscale and atomic-scale order appear.
View Article and Find Full Text PDFThe ability of antibodies to bind a wide variety of analytes with high specificity and high affinity make them ideal candidates as molecular recognition elements for chemical and biological sensors. However, their widespread use in sensing devices has been hampered by their poor stability and high production cost. Here we report the design and synthesis of a new class of antibody-mimetic materials based on functionalized peptoid nanosheets.
View Article and Find Full Text PDFTwo-dimensional nanomaterials play a critical role in biology (e.g., lipid bilayers) and electronics (e.
View Article and Find Full Text PDFCapillary condensation is employed to probe the solid-liquid interfacial energy in electrowetting on dielectric. The height of an annular water meniscus formed via capillary condensation inside the surface force apparatus is measured as a function of the potential applied across the meniscus and the dielectric stack where the meniscus is formed. According to the Kelvin equation, a decrease in the solid-liquid interfacial energy at constant temperature and relative humidity should lead to an increase in the meniscus height.
View Article and Find Full Text PDFWe demonstrate that noncovalent ion-pair interactions in solution can be employed to control the molecular spacing of thiols in a self-assembled monolayer (SAM) on gold. Ion-pairs formed between the carboxylate tail-group of 16-mercaptohexadecanoic acid (MHA) and tetraalkylammonium (TAA+) hydroxide salts of various alkyl side-chain lengths remain intact during chemisorption of the thiol on gold. The resulting ion-pair SAMs exhibit a 1:1 molar ratio of MHA:TAA+ on the surface and are covalently bound to the gold surface through the thiol headgroup of MHA.
View Article and Find Full Text PDF