Publications by authors named "Gloria Isabel Huerta-Prado"

Genomic selection is revolutionizing both plant and animal breeding, with its practical application depending critically on high prediction accuracy. In this study, we aimed to enhance prediction accuracy by exploring the use of graph models within a linear mixed model framework. Our investigation revealed that incorporating the graph constructed with line connections alone resulted in decreased prediction accuracy compared to conventional methods that consider only genotype effects.

View Article and Find Full Text PDF

Introduction: Because Genomic selection (GS) is a predictive methodology, it needs to guarantee high-prediction accuracies for practical implementations. However, since many factors affect the prediction performance of this methodology, its practical implementation still needs to be improved in many breeding programs. For this reason, many strategies have been explored to improve the prediction performance of this methodology.

View Article and Find Full Text PDF

Genomic selection (GS) is revolutionizing plant breeding. However, its practical implementation is still challenging, since there are many factors that affect its accuracy. For this reason, this research explores data augmentation with the goal of improving its accuracy.

View Article and Find Full Text PDF