Publications by authors named "Gloria E Hernandez"

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels.

View Article and Find Full Text PDF

Adult hematopoietic stem and progenitor cells (HSPCs) respond directly to inflammation and infection, causing both acute and persistent changes to quiescence, mobilization, and differentiation. Here we show that murine fetal HSPCs respond to prenatal inflammation in utero and that the fetal response shapes postnatal hematopoiesis and immune cell function. Heterogeneous fetal HSPCs show divergent responses to maternal immune activation (MIA), including changes in quiescence, expansion, and lineage-biased output.

View Article and Find Full Text PDF

Leukocytes and endothelial cells frequently cooperate to resolve inflammatory events. In most cases, these interactions are transient in nature and triggered by immunological insults. Here, we report that in areas of disturbed blood flow, aortic endothelial cells permanently and intimately associate with a population of specialized macrophages that are recruited at birth from the closing ductus arteriosus and share the luminal surface with the endothelium becoming interwoven in the tunica intima.

View Article and Find Full Text PDF

Objective: Failure to close the ductus arteriosus, patent ductus arteriosus, accounts for 10% of all congenital heart defects. Despite significant advances in patent ductus arteriosus management, including pharmacological treatment targeting the prostaglandin pathway, a proportion of patients fail to respond and must undergo surgical intervention. Thus, further refinement of the cellular and molecular mechanisms that govern vascular remodeling of this vessel is required.

View Article and Find Full Text PDF

Purpose Of Review: Single-cell RNA sequencing (scRNA-seq) can capture the transcriptional profile of thousands of individual cells concurrently from complex tissues and with remarkable resolution. Either with the goal of seeking information about distinct cell subtypes or responses to a stimulus, the approach has provided robust information and promoted impressive advances in cardiovascular research. The goal of this review is to highlight strategies and approaches to leverage this technology and bypass potential caveats related to evaluation of the vascular cells.

View Article and Find Full Text PDF

Purpose Of Review: The well recognized plasticity and diversity, typical of monocytes and macrophages have recently been expanded by the knowledge that additional macrophage lineages originated directly from embryonic progenitors, populate and establish residency in all tissues examined so far. This review aims to summarize our current understanding on the diversity of monocyte/macrophage subtypes associated with the vasculature, their specific origins, and nature of their cross-talk with the endothelium.

Recent Findings: Taking stock of the many interactions between the endothelium and monocytes/macrophages reveals a far more intricate and ever-growing depth.

View Article and Find Full Text PDF

Given its role as the source of definitive hematopoietic cells, we sought to determine whether mutations initiated in the hemogenic endothelium would yield hematopoietic abnormalities or malignancies. Here, we find that endothelium-specific transposon mutagenesis in mice promotes hematopoietic pathologies that are both myeloid and lymphoid in nature. Frequently mutated genes included previously recognized cancer drivers and additional candidates, such as Pi4ka, a lipid kinase whose mutation was found to promote myeloid and erythroid dysfunction.

View Article and Find Full Text PDF

The generation of distinct hematopoietic cell types, including tissue-resident immune cells, distinguishes fetal from adult hematopoiesis. However, the mechanisms underlying differential cell production to generate a layered immune system during hematopoietic development are unclear. Using an irreversible lineage-tracing model, we identify a definitive hematopoietic stem cell (HSC) that supports long-term multilineage reconstitution upon transplantation into adult recipients but does not persist into adulthood in situ.

View Article and Find Full Text PDF