Publications by authors named "Gloria Barzana"

Salinity and excess zinc are two main problems that have limited agriculture in recent years. Aquaporins are crucial in regulating the passage of water and solutes through cells and may be essential for mitigating abiotic stresses. In the present study, the adaptive response to moderate salinity (60 mM NaCl) and excess Zn (1 mM ZnSO ) were compared alone and in combination in Cucumis sativus L.

View Article and Find Full Text PDF

The aim of this study was to investigate the impact of changes in aquaporin expression on the growth of onion ( L.) plants when subjected to dual applications of microorganism-based soil amendments and foliar nanoencapsulated mineral nutrients. Multiple physiological parameters related to water, gas exchange, and nutrient content in leaf, root, and bulb tissues were determined.

View Article and Find Full Text PDF

As salinity is one of the main environmental stresses that reduces the growth and productivity of crops by reducing water uptake and transport, in this work, we associated the physiological tolerance response of onion to increased NaCl concentration (from 25, 50, 75, to 100 mM) with the expression of aquaporins. Measurements of transpiration, gas exchange and nutrients content in leaf, roots and bulb tissues were determined in relation to the expression of PIP2, PIP1, and TIP2 aquaporin genes. The results indicated a significant decrease in growth in leaves, roots and bulbs only when 50 mM NaCl was applied.

View Article and Find Full Text PDF

Nanotechnology brings to agriculture new forms of fertilizer applications, which could be used to reduce environmental contamination and increase efficiency. In this study, foliar fertilization with nanoencapsulated boron (B) was studied in comparison to an ionic B (non-encapsulated) application in young B-deficient almond trees grown under a controlled environment. B movement within the plant in relation to the leaf gas exchange, water relations parameters, and root hydraulic conductance was measured.

View Article and Find Full Text PDF

Melon (Cucumis melo L.) is a very important crop throughout the world and has great economic importance, in part due to its nutritional properties. It prefers well-drained soil with low acidity and has a strong demand for water during fruit set.

View Article and Find Full Text PDF

Enhancement of the passage of water through membranes is one of the main mechanisms via which cells can maintain their homeostasis under stress conditions, and aquaporins are the main participants in this process. However, in the last few years, a number of studies have reported discrepancies between aquaporin messenger RNA (mRNA) expression and the number of aquaporin proteins synthesised in response to abiotic stress. These observations suggest the existence of post-transcriptional mechanisms which regulate plasma membrane intrinsic protein (PIP) trafficking to the plasma membrane.

View Article and Find Full Text PDF

Drought stress is one of the major abiotic factors affecting the growth and development of crops. The primary effect of drought is the alteration of water and nutrient uptake and transport by roots, related essentially with aquaporins and ion transporters of the plasma membrane. Therefore, the efficiency of water and nutrient transport across cell layers is a main factor in tolerance mechanisms.

View Article and Find Full Text PDF

Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account.

View Article and Find Full Text PDF

Genotypic differences in transpiration rate responses to high vapour pressure deficit (VPD) was earlier reported. Here we tested the hypothesis that this limitation could relate to different degrees of dependence on the apoplastic (spaces between cells), and symplastic water transport pathways (through cells via aquaporin-facilitated transport), which are known to have different hydraulic conductivities. The low transpiration rate (Tr) genotype PRLT 2/89/33 either restricted its transpiration under high VPD, or was more sensitive to VPD than H77/833-2, when grown hydroponically or in soil.

View Article and Find Full Text PDF

The arbuscular mycorrhizal (AM) symbiosis alters host plant physiology under drought stress, but no information is available on whether or not the AM affects respond to drought locally or systemically. A split-root system was used to obtain AM plants with total or only half root system colonized as well as to induce physiological drought affecting the whole plant or non-physiological drought affecting only the half root system. We analysed the local and/or systemic nature of the AM effects on accumulation of osmoregulatory compounds and aquaporins and on antioxidant systems.

View Article and Find Full Text PDF

The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies.

View Article and Find Full Text PDF

We have performed the isolation, functional characterization, and expression analysis of aquaporins in roots and leaves of Helianthemum almeriense, in order to evaluate their roles in tolerance to water deficit. Five cDNAs, named HaPIP1;1, HaPIP1;2, HaPIP2;1, HaPIP2;2, and HaTIP1;1, were isolated from H. almeriense.

View Article and Find Full Text PDF

Background And Aims: The movement of water through mycorrhizal fungal tissues and between the fungus and roots is little understood. It has been demonstrated that arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties, including root hydraulic conductivity. However, it is not clear whether this effect is due to a regulation of root aquaporins (cell-to-cell pathway) or to enhanced apoplastic water flow.

View Article and Find Full Text PDF

The arbuscular mycorrhizal (AM) symbiosis has been shown to modulate the same physiological processes as the phytohormone abscisic acid (ABA) and to improve plant tolerance to water deficit. The aim of the present research was to evaluate the combined influence of AM symbiosis and exogenous ABA application on plant root hydraulic properties and on plasma-membrane intrinsic proteins (PIP) aquaporin gene expression and protein accumulation after both a drought and a recovery period. Results obtained showed that the application of exogenous ABA enhanced osmotic root hydraulic conductivity (L) in all plants, regardless of water conditions, and that AM plants showed lower L values than nonAM plants, a difference that was especially accentuated when plants were supplied with exogenous ABA.

View Article and Find Full Text PDF